Dynamic Expression Profile of Follicles at Different Stages in High- and Low-Production Laying Hens

Author:

Yang Lan1,Fan Xuewei1,Tian Kaiyuan12,Yan Sensen12,Xu Chunhong12,Tian Yixiang3,Xiao Chengpeng12,Jia Xintao12,Shi Junlai12,Bai Ying4,Li Wenting12ORCID

Affiliation:

1. College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China

2. The Shennong Laboratory, Zhengzhou 450046, China

3. Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China

4. School of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China

Abstract

Improving the efficiency of hens and extending the egg-laying cycle require maintaining high egg production in the later stages. The ovarian follicles, as the primary functional units for ovarian development and oocyte maturation, play a crucial role in regulating the continuous ovulation of hens. The egg production rate of laying hens is mostly affected by proper follicle growth and ovulation in the ovaries. The objective of this study was to identify the key genes and signaling pathways involved in the development of ovarian follicles in Taihang hens through transcriptome screening. In this study, RNA sequencing was used to compare and analyze the transcriptomes of ovarian follicles at four developmental stages: small white follicles (SWF), small yellow follicles (SYF), F5 follicles, and F2 follicles, from two groups: the high continual production group (H-Group) and the low continual production group (L-Group). A total of 24 cDNA libraries were constructed, and significant differential expression of 96, 199, 591, and 314 mRNAs was detected in the SWF, SYF, F5, and F2 follicles of the H and L groups, respectively. Based on the results of GO and KEGG enrichment analyses, each stage of follicle growth possesses distinct molecular genetic features, which have important effects on follicle development and significantly promote the formation of continuous production traits through the biosynthesis of steroid hormones, cytokine–cytokine receptor interaction, and neuroactive ligand–receptor interaction. Additionally, through STEM analysis, we identified 59 DEGs, including ZP4, KCNH1, IGFs, HMGA2, and CDH1, potentially associated with follicular development within four significant modules. This study represents the first transcriptome investigation of follicles in hens with high and low egg-producing characteristics at four crucial developmental stages. These findings provide important molecular evidence for understanding the regulation of follicular development and its variations.

Funder

National Natural Science Foundation of China

Key Research Project of the Shennong Laboratory

Young Elite Scientists Sponsorship Program by CAST

the starting Foundation for Outstanding Young Scientists of Henan Agricultural University

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3