Protective Effects of One 2,4-Dihydro-3H-Pyrazol-3-one Derivative against Posterior Capsular Opacification by Regulation of TGF-β2/SMADs and Non-SMAD Signaling, Collagen I, and Fibronectin Proteins

Author:

Shih Chun-ChingORCID,Lee Chia-YiORCID,Wong Fung-FuhORCID,Lin Cheng-Hsiu

Abstract

Many elderly individuals frequently experience cataracts that interfere with vision. After cataract surgery, the left lens epithelial cell (LEC) exhibited fibrosis and posterior capsule opacification (PCO). Sometimes, there is a need for a second surgery; nevertheless, people try other methods, such as a good pharmacological agent, to treat PCO to reduce transforming growth factor-β2 (TGF-β2) amounts to avoid secondary surgery. The aim of the present study was to explore the potential anti-PCO activity of five 2,4-dihydro-3H-pyrazol-3-one (DHPO) derivatives in a TGF-β2-induced fibrogenesis SRA01/04 cell model. The 2-phenyl-5-propyl-DHPO (TSE; no. 2: TSE-2) compound showed the best activity of reduced expression levels of TGF-β2 among five derivatives and therefore was chosen to evaluate the anti-PCO activity and molecular mechanisms on the Sma and mad protein (SMAD) signaling pathway (including TGF-β2, SMADs, and the inhibition of nuclear translocation of SMADs), non-SMAD pathway proteins, including p-extracellular, regulated protein kinases (ERK) 1/2, or p-c-Jun N-terminal kinase (JUN) by Western blotting, PCR, or confocal immunofluorescence analyses. Following treatment with 10 μg/mL of the five compounds, the cells displayed great viability by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTT) assay. In this study, the result of lactate dehydrogenase (LDH) activity measurement did not affect the cytotoxicity of the five compounds. In TGF-β2-induced fibrogenesis in SRA01/04 cells, treatment with the TSE compound decreased the TGF-β2/SMAD signaling genes, including reduced mRNA or expression levels of TGF-β2, SMAD3, and SMAD4, leading to inhibition of TGF-β2-induced fibrogenesis. Our confocal immunofluorescence analyses demonstrated that TSE treatment displays a suppressive effect on SMAD2/3 or SMAD4 translocation to the nucleus. Furthermore, TSE treatment exhibits a reduction in the non-SMAD target gene expression levels of p- c-Jun N-terminal kinase (JUN), p- extracellular, regulated protein kinases (ERK)1/2, p- p38 mitogen-activated protein kinase (p38), p-phosphatidylinositol 3-kinase (PI3K), p-mammalian target of rapamycin complex (mTORC), p-Akt (Ser473), and p-Akt (Thr308). The overall effect of TSE is to reduce the expression levels of collagen I and fibrinogen (FN), thus contributing to antifibrotic effects in cell models mimicking PCO. Our findings reveal the benefits of TSE by regulating TGF-β/SMAD signaling and non-SMAD signaling-related gene proteins to display antifibrotic activity in cells for the possibility of preventing PCO after cataract surgery.

Funder

Central Taiwan University of Science and Technology

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3