Efficient Adsorption of Lead Ions from Synthetic Wastewater Using Agrowaste-Based Mixed Biomass (Potato Peels and Banana Peels)

Author:

Ashfaq Aamna,Nadeem Razyia,Bibi Shamsa,Rashid UmerORCID,Hanif Muhammad Asif,Jahan Nazish,Ashfaq Zeeshan,Ahmed Zubair,Adil Muhammad,Naz Maleeha

Abstract

The aquatic environment is continuously being polluted by heavy metals released from industrial, domestic, agricultural, and medical applications. It is difficult to remove heavy metals, as they are nonbiodegradable. Heavy metals cause genotoxicity and serious carcinogenic disorders. Various conventional methods have been used for the removal of heavy metals, but these are time-consuming and not economical, so green methods, being economical, are preferred over conventional methods. Adsorption, being effective, environmentally friendly, and cheap, is often preferred. The present investigation investigated the adsorption efficiency of agrowaste-based biosorbents for removal of Pb(II) ion from the synthetic wastewater. Mixed biomass of banana peel and potato peels was used to create biosorbents. The biosorbents were characterized in terms of structural and surface morphology by SEM, while functional groups were analyzed by FT-IR and XRD analysis. The adsorption of Pb(II) was studied by a batch method, and various experimental parameters were studied. Optimum conditions for the removal of lead were pH = 5, concentration = 10 ppm, adsorbent dosage = 1.0 g, and contact time = 2 h. Kinetic modelling studies showed that the adsorption of Pb(II) ions followed a pseudo-second-order mechanism, and the Langmuir isotherm model was found to fit well for this study. Highlights: Synthesis of biosorbents (mixed biomass of potato peel and banana peel, biochar, TiO2 nanocomposites). Characterization of prepared biosorbents (SEM, XRD, FT-IR). Optimized parameters (pH, initial concentration, adsorbent dosage, and contact time) for removal of pollutant.

Funder

Higher Education Commission

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3