Ensuring Sustainable Grid Stability through Effective EV Charging Management: A Time and Energy-Based Approach

Author:

Alyami Saeed1ORCID

Affiliation:

1. Department of Electrical Engineering, Majmaah University, Al Majmaah 11592, Saudi Arabia

Abstract

The rise of electric vehicles (EVs) has significantly transformed transportation, offering environmental advantages by curbing greenhouse gas emissions and fossil fuel dependency. However, their increasing adoption poses challenges for power systems, especially distribution systems, due to the direct connection of EVs with them. It requires robust infrastructure development, smart grid integration, and effective charging solutions to mitigate issues like overloading and peak demand to ensure grid stability, reliability, and sustainability. To prevent local equipment overloading during peak load intervals, the management of EV charging demand is carried out in this study, considering both the time to deadline and the energy demand of EVs. Initially, EVs are prioritized based on these two factors (time and energy)—those with shorter deadlines and lower energy demands receive higher rankings. This prioritization aims to maximize the number of EVs with their energy demands met. Subsequently, energy allocation to EVs is determined by their rankings while adhering to the transformer’s capacity limits. The process begins with the highest-ranked EV and continues until the transformer nears its limit. To this end, an index is proposed to evaluate the performance of the proposed method in terms of unserved EVs during various peak load intervals. Comparative analysis against the earliest deadline first approach demonstrates the superior ability of the proposed method to fulfill the energy demand of a larger number of EVs. By ensuring sustainable energy management, the proposed method supports the widespread adoption of EVs and the transition to a cleaner, more sustainable transportation system. Comparative analysis shows that the proposed method fulfills the energy needs of up to 33% more EVs compared to the earliest deadline method, highlighting its superior performance in managing network loads.

Publisher

MDPI AG

Reference37 articles.

1. Evaluating environmental benefits from driving electric vehicles: The case of Shanghai, China;Wei;Transp. Res. Part D Transp. Environ.,2023

2. Resilience Enhancement Strategies for and Through Electric Vehicles;Hussain;Sustain. Cities Soc.,2022

3. Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption;Powell;Nat. Energy,2022

4. Adaptive real power capping method for fair overvoltage regulation of distribution networks with high penetration of PV systems;Alyami;IEEE Trans. Smart Grid,2014

5. FleetCarma (2023, November 17). Charge the North—Results from the World’s Largest Electric Vehicle Charging Study. Available online: https://www.geotab.com/blog/preparing-for-evs/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3