Echinochrome A Prevents Diabetic Nephropathy by Inhibiting the PKC-Iota Pathway and Enhancing Renal Mitochondrial Function in db/db Mice

Author:

Pham Trong12,Nguyen To1,Yun Hyeong1,Vasileva Elena3ORCID,Mishchenko Natalia3ORCID,Fedoreyev Sergey3ORCID,Stonik Valentin3,Vu Thu2,Nguyen Huy2ORCID,Cho Sung4ORCID,Kim Hyoung1ORCID,Han Jin1ORCID

Affiliation:

1. Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47392, Republic of Korea

2. Faculty of Biology, University of Science, Vietnam National University, Hanoi 10000, Vietnam

3. G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia

4. Division of Cardiology, Department of Internal Medicine, Ilsan Paik Hospital, Cardiac & Vascular Center, College of Medicine, Inje University, Goyang 10380, Republic of Korea

Abstract

Echinochrome A (EchA) is a natural bioproduct extracted from sea urchins, and is an active component of the clinical drug, Histochrome®. EchA has antioxidant, anti-inflammatory, and antimicrobial effects. However, its effects on diabetic nephropathy (DN) remain poorly understood. In the present study, seven-week-old diabetic and obese db/db mice were injected with Histochrome (0.3 mL/kg/day; EchA equivalent of 3 mg/kg/day) intraperitoneally for 12 weeks, while db/db control mice and wild-type (WT) mice received an equal amount of sterile 0.9% saline. EchA improved glucose tolerance and reduced blood urea nitrogen (BUN) and serum creatinine levels but did not affect body weight. In addition, EchA decreased renal malondialdehyde (MDA) and lipid hydroperoxide levels, and increased ATP production. Histologically, EchA treatment ameliorated renal fibrosis. Mechanistically, EchA suppressed oxidative stress and fibrosis by inhibiting protein kinase C-iota (PKCι)/p38 mitogen-activated protein kinase (MAPK), downregulating p53 and c-Jun phosphorylation, attenuating NADPH oxidase 4 (NOX4), and transforming growth factor-beta 1 (TGFβ1) signaling. Moreover, EchA enhanced AMPK phosphorylation and nuclear factor erythroid-2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) signaling, improving mitochondrial function and antioxidant activity. Collectively, these findings demonstrate that EchA prevents DN by inhibiting PKCι/p38 MAPK and upregulating the AMPKα/NRF2/HO-1 signaling pathways in db/db mice, and may provide a therapeutic option for DN.

Funder

Korean government

Korean government (the Ministry of Science and ICT, the Ministry of Health & Welfare

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3