Oleoylethanolamide Protects against Acute Ischemic Stroke by Promoting PPARα-Mediated Microglia/Macrophage M2 Polarization

Author:

Li Ying12,Zhang Yanan12,Wang Qing12,Wu Chuang12,Du Guicheng12,Yang Lichao3

Affiliation:

1. Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China

2. Xiamen Key Laboratory of Traditional Chinese Medicine Bioengineering, Xiamen Medical College, Xiamen 361023, China

3. School of Medicine, Xiamen University, Xiamen 361005, China

Abstract

Oleoylethanolamide (OEA) has been demonstrated to be a feasible protectant in ischemic stroke. However, the mechanism for OEA-afforded neuroprotection remains elusive. The present study aimed to investigate the neuroprotective effects of OEA on peroxisome proliferator-activated receptor α (PPARα)-mediated microglia M2 polarization after cerebral ischemia. Transient middle cerebral artery occlusion (tMCAO) was induced for 1 h in wild-type (WT) or PPARα-knock-out (KO) mice. Mouse small glioma cells (BV2) microglia and primary microglia cultures were used to evaluate the direct effect of OEA on microglia. A coculture system was used to further elucidate the effect of OEA on microglial polarization and ischemic neurons’ fate. OEA promoted the microglia switch from an inflammatory M1 phenotype to the protective M2 phenotype and enhanced the binding of PPARα with the arginase1 (Arg1) and Ym1 promoter in WT mice but not in KO mice after MCAO. Notably, the increased M2 microglia caused by OEA treatment were strongly linked to neuron survival after ischemic stroke. In vitro studies confirmed that OEA shifted BV2 microglia from (lipopolysaccharide) LPS-induced M1-like to M2-like phenotype through PPARα. Additionally, the activation of PPARα in primary microglia by OEA led to an M2 protective phenotype that enhanced neuronal survival against oxygen-glucose deprivation (OGD) in the coculture systems. Our findings demonstrate the novel effects of OEA in enhancing microglia M2 polarization to protect neighboring neurons by activating the PPARα signal, which is a new mechanism of OEA against cerebral ischemic injury. Therefore, OEA might be a promising therapeutic drug for stroke and targeting PPARα-mediated M2 microglia may represent a new strategy to treat ischemic stroke.

Funder

National Science Foundation of China

Fujian Provincial Natural Science Foundation

Fundamental Research Funds for the Central Universities

Guiding Medical and Health Projects of Xiamen

Provincial Department of Education of Fujian, China

Science Foundation of Xiamen Medical College

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3