Design of Potent Inhibitors Targeting the Main Protease of SARS-CoV-2 Using QSAR Modeling, Molecular Docking, and Molecular Dynamics Simulations

Author:

Oubahmane Mehdi1ORCID,Hdoufane Ismail1ORCID,Delaite Christelle2,Sayede Adlane3ORCID,Cherqaoui Driss1,El Allali Achraf4ORCID

Affiliation:

1. Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, BP 2390, Marrakech 40000, Morocco

2. Laboratoire de Photochimie et d’Ingénierie Macromoléculaires (LPIM), Ecole Nationale Supérieure de Chimie de Mulhouse, Université de Haute-Alsace, 68100 Mulhouse, France

3. University Artois, CNRS, Centrale Lille, University Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), F-62300 Lens, France

4. African Genome Center, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a serious global public health threat. The evolving strains of SARS-CoV-2 have reduced the effectiveness of vaccines. Therefore, antiviral drugs against SARS-CoV-2 are urgently needed. The main protease (Mpro) of SARS-CoV-2 is an extremely potent target due to its pivotal role in virus replication and low susceptibility to mutation. In the present study, a quantitative structure–activity relationship (QSAR) study was performed to design new molecules that might have higher inhibitory activity against SARS-CoV-2 Mpro. In this context, a set of 55 dihydrophenanthrene derivatives was used to build two 2D-QSAR models using the Monte Carlo optimization method and the Genetic Algorithm Multi-Linear Regression (GA-MLR) method. From the CORAL QSAR model outputs, the promoters responsible for the increase/decrease in inhibitory activity were extracted and interpreted. The promoters responsible for an increase in activity were added to the lead compound to design new molecules. The GA-MLR QSAR model was used to ensure the inhibitory activity of the designed molecules. For further validation, the designed molecules were subjected to molecular docking analysis and molecular dynamics simulations along with an absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis. The results of this study suggest that the newly designed molecules have the potential to be developed as effective drugs against SARS-CoV-2.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3