Heat Stress and Histopathological Changes of Vital Organs: A Novel Approach to Assess Climate Resilience in Farm Animals

Author:

Rebez Ebenezer Binuni,Sejian VeerasamyORCID,Silpa Mullakkalparambil VelayudhanORCID,Dunshea Frank R.ORCID

Abstract

Heat stress causes functional and metabolic alterations in different cells and tissues. There are several pathomorphological changes and biomarkers associated with head load in adaptive and productive organs of livestock. Heat stress-induced histopathological alterations in livestock were categorized as degenerative changes (fatty degeneration, steatosis, hydropic degeneration), necrosis (pyknosis, fibrosis), circulatory disturbances (hyperemia, edema, hemorrhage, congestion, thrombosis, ischemia), growth disturbances (hyperplasia, atrophy) and focal/diffuse inflammation (vascular changes, exudation). Upon immunohistochemical analysis, the biomarkers identified in growth-related organs were HSP70, HSP60, GABA, GABAAR, GABABR, HSP90, GnRH, LH, FSH, m6A, Nrf2, and C/EBPβ. The biomarkers in the reproductive organs were HSP70, Bax, Bcl-2, GABA, GABAAR, GABABR, Caspase-3, HSP90, HSPB9, HSPB10, HSF1, HSP40, T, E2, Cyt-C, CAT, BCL2L1, and VEGF. The identified biomarkers in the immune organs were CD3+ T cells, CD4+ T cells, CD8+ T cells, HSP70, and Bcl-2. All these biomarkers could serve as reliable variables in heat stress assessment in livestock. Further, HSP70, HSP90, HSP60, NPY, HSP27, Bcl-2, NF-κB, AQP2, Insulin, CD3+ T cells, CD4+ T cells, CD172a, EGF, AQP1, AQP3, AQP4, AQP5, CRYAB, GHR, 5-HT, CCK, and GLP-1 are heat stress-related biomarkers in adaptive organs that help in assessing the climate resilience of a livestock species and improving understanding about adaptive mechanisms. Among these biomarkers, HSP70 was established to be the ideal cellular biomarker for scaling heat response in livestock. Thus, examining heat-stressed organ histopathology and identifying cellular markers by immunohistochemistry may lay the foundation for screening climate-resilient livestock breeds in the challenging climatic scenario. Further, such an approach could help in developing concepts to combat the detrimental consequences of heat stress to ensure sustainability in livestock production.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference182 articles.

1. The Physiological and Productivity Effects of Heat Stress in Cattle—A Review;Herbut;Ann. Anim. Sci.,2019

2. Methane Production by Ruminants:Its Contribution to Global Warming;Moss;Ann. Zootech.,2000

3. FAO (2019). Moving Forward on Food Loss and Waste Reduction, Food and Agriculture Organization of the United Nations. The state of food and agriculture.

4. Greenhouse Gas Emissions from Animal Houses and Manure Stores;Jungbluth;Nutr. Cycl. Agroecosyst.,2001

5. Closing the Global N2O Budget: Nitrous Oxide Emissions through the Agricultural Nitrogen Cycle: OECD/IPCC/IEA Phase II Development of IPCC Guidelines for National Greenhouse Gas Inventory Methodology;Mosier;Nutr. Cycl. Agroecosyst.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3