Water Resource Management of Salalah Plain Aquifer Using a Sustainable Approach

Author:

Shammas Mahaad Issa1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering, Dhofar University, Salalah 211, Oman

Abstract

A sustainable approach is proposed for managing the effects of salinity ingression in Salalah coastal aquifer, Oman. This paper aims to analyze and compare the groundwater levels and salinity of the aquifer from 1993 to 2027, considering both predictive and actual transient scenarios. Two novel scenarios were proposed, established, and examined in this study to bring back the aquifer to steady-state condition. The first scenario entails ceasing groundwater pumping from both Salalah and Saada wellfields, while compensating for the groundwater supply from these sources with surplus desalinated water. This scenario is projected to occur during the predictive period spanning from 2023 to 2027, denoted Scenario A. The second scenario is business as usual and involves continuing pumping from both wellfields during the same predictive period, denoted Scenario B. A numerical model for 3D flow simulation and advective transport modeling showed that on the eastern side of the Salalah coastal aquifer, the extent of seawater intrusion (SWI) was identified stretching from the shoreline to a distance of 1800 m, 1200 m, 0 m, and 600 m, in years 2011, 2014, 2018, and 2022 under the transient period, whereas SWI was delineated in land up to 0 m and 700 m in the predictive year 2027 under Scenarios A and B, respectively. In the western side of Salalah coastal aquifer, SWI was delineated in land up to 2000 m, 1700 m, 0 m, and 800 m, in years 2011, 2014, 2018, and 2022 under the transient period, whereas SWI was delineated in land up to 0 m and 750 m in the predictive year 2027 under Scenarios A and B, respectively. This study claims that Scenario A effectively pushed the seawater interface back to the coastline, projecting its reach to the shoreline (0 m) by 2027. In contrast, in baseline Scenario B, the wedge of saline intrusion in the Salalah coastal aquifer was delineated from the shoreline, up to 800 m inland, which accounted for continuation of pumping from both wellfields during the predictive period. The study concludes that Scenario A has the capability to efficiently reduce the impact of saline inflows from the coast, while Scenario B results in a more pronounced impact of salinity intrusion.

Publisher

MDPI AG

Reference44 articles.

1. Seawater intrusion in the Salalah plain aquifer, Oman;Shammas;Environ. Geol.,2007

2. Impact of the Al-Qara mountain fogwater forest on groundwater recharge in the Salalah coastal aquifer: Sultanate of Oman;Shammas;Ecohydrol. Hydrobiol.,2007

3. Shammas, M.I. (2024, April 06). Sustainable Management of the Salalah Coastal Aquifer in Oman Using an Integrated Approach. TRITA-LWR PHD. Doctoral Thesis in Land and Water Resources Sciences, KTH Architecture and the Built Environment, Stockholm, Sweden. Available online: https://www.diva-portal.org/smash/get/diva2:12072/FULLTEXT01.pdf.

4. The effectiveness of artificial recharge in combating seawater intrusion in Salalah coastal aquifer, Oman;Shammas;Environ. Geol.,2008

5. Predictive simulation of flow and solute transport for managing the Salalah coastal aquifer, Oman;Shammas;Water Resour. Manag.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3