A Novel Approach for Software Defect prediction Based on the Power Law Function

Author:

Ren Junhua,Liu Feng

Abstract

Power law describes a common behavior in which a few factors play decisive roles in one thing. Most software defects occur in very few instances. In this study, we proposed a novel approach that adopts power law function characteristics for software defect prediction. The first step in this approach is to establish the power law function of the majority of metrics in a software system. Following this, the power law function’s maximal curvature value is applied as the threshold value for determining higher metric values. Furthermore, the total number of higher metric values is counted in each instance. Finally, the statistical data are clustered into different categories as defect-free and defect-prone instances. Case studies and a comparison were conducted based on twelve public datasets of Promise, SoftLab, and ReLink by using five different algorithms. The results indicate that the precision, recall, and F-measure values obtained by the proposed approach are the most optimal among the tested five algorithms, the average values of recall and F-measure were improved by 14.3% and 6.0%, respectively. Furthermore, the complexity of the proposed approach based on the power law function is O ( 2 n ) , which is the lowest among the tested five algorithms. The proposed approach is thus demonstrated to be feasible and highly efficient at software defect prediction with unlabeled datasets.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cost-sensitive Approach for improving AUC-ROC Curve of Software Defect Prediction;2024 International Seminar on Intelligent Technology and Its Applications (ISITIA);2024-07-10

2. Software defect prediction via optimal trained convolutional neural network;Advances in Engineering Software;2022-07

3. An Unsupervised Software Fault Prediction Approach Using Threshold Derivation;IEEE Transactions on Reliability;2022-06

4. Can Defect Prediction Be Useful for Coarse-Level Tasks of Software Testing?;Applied Sciences;2020-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3