Spatiotemporal Dynamics of Surface Ozone and Its Relationship with Meteorological Factors over the Beijing–Tianjin–Tangshan Region, China, from 2016 to 2019

Author:

Bai LinyanORCID,Feng Jianzhong,Li Ziwei,Han Chunming,Yan FuliORCID,Ding YixingORCID

Abstract

In recent years, ozone pollution has been increasing in some parts of the world. In this study, we used the Beijing–Tianjin–Tangshan (BJ-TJ-TS) urban agglomeration region as a case study and used satellite remotely sensed inversion data and hourly ground monitoring observations of surface ozone concentrations, meteorological data, and other factors from 2016 to 2019 to explore the spatiotemporal dynamic characteristics of surface ozone concentration and its pollution levels. We also investigated their coupling relationships with meteorological factors, including temperature, pressure, relative humidity, wind velocity, and sunshine duration, in order to support the development of effective control measures for regional ozone pollution. The results revealed that the surface ozone concentration throughout the BJ-TJ-TS region from 2016 to 2019 exhibited an overall pattern of high values in the northwest and low values in the southeast, as well as an obvious difference between built-up and non-built-up areas (especially in Beijing). Meanwhile, a notable increasing trend of ozone levels was discovered in the BJ and TJ areas from 2016 to 2019, whereas this upward trend was not evident in the TS area. In all three areas, the highest monthly average ozone values occurred in the summer month of June, while the lowest monthly average levels occurred in the winter month of December. Their diurnal variation values reached a maximum value at approximately 3:00–4:00 p.m. and a minimum value at approximately 7:00 a.m. It is clear that high temperature, long sunshine duration, low atmospheric pressure, and weak wind velocity conditions, as well as certain relative humidity levels, readily led to high-concentration ozone pollution. Meanwhile, the daily average values of the five meteorological factors on days with Grade I and Grade II ozone pollution displayed different characteristics.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3