Study of Neutron-, Proton-, and Gamma-Irradiated Silicon Detectors Using the Two-Photon Absorption–Transient Current Technique

Author:

Pape Sebastian12ORCID,Fernández García Marcos13ORCID,Moll Michael1ORCID,Wiehe Moritz1ORCID

Affiliation:

1. CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland

2. Department of Physics-AG Kröninger, TU Dortmund University, 44227 Dortmund, Germany

3. Instituto de Física de Cantabria (CSIC-UC), Avenida de los Castros, E-39005 Santander, Spain

Abstract

The Two-Photon Absorption–Transient Current Technique (TPA-TCT) is a device characterisation technique that enables three-dimensional spatial resolution. Laser light in the quadratic absorption regime is employed to generate excess charge carriers only in a small volume around the focal spot. The drift of the excess charge carriers is studied to obtain information about the device under test. Neutron-, proton-, and gamma-irradiated p-type pad silicon detectors up to equivalent fluences of about 7 × 1015 neq/cm2 and a dose of 186 Mrad are investigated to study irradiation-induced effects on the TPA-TCT. Neutron and proton irradiation lead to additional linear absorption, which does not occur in gamma-irradiated detectors. The additional absorption is related to cluster damage, and the absorption scales according to the non-ionising energy loss. The influence of irradiation on the two-photon absorption coefficient is investigated, as well as potential laser beam depletion by the irradiation-induced linear absorption. Further, the electric field in neutron- and proton-irradiated pad detectors at an equivalent fluence of about 7 × 1015 neq/cm2 is investigated, where the space charge of the proton-irradiated devices appears inverted compared to the neutron-irradiated device.

Funder

European Union’s Horizon 2020 Research and Innovation programme

Wolfgang Gentner Program of the German Federal Ministry of Education and Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3