Cellular Automata Model for Analysis and Optimization of Traffic Emission at Signalized Intersection

Author:

Marzoug RachidORCID,Lakouari NoureddineORCID,Pérez Cruz José RobertoORCID,Vega Gómez Carlos JesahelORCID

Abstract

Traffic emission is one of the most severe issues in our modern societies. A large part of emissions occurs in cities and especially at intersections due to the high interactions between vehicles. In this paper, we proposed a cellular automata model to investigate the different traffic emissions (CO2, PM, VOC, and NOx) and speeds at a two-lane signalized intersection. The model is designed to analyze the effects of signalization by isolating the parameters involved in vehicle-vehicle interactions (lane changing, speed, density, and traffic heterogeneity). It was found that the traffic emission increases (decreases) with the increasing of green lights duration (Tg) at low (high) values of vehicles injection rate (α). Moreover, by taking CO2 as the order parameter, the phase diagram shows that the system can be in four different phases (I, II, III, and IV) depending on α and Tg. The transition from phase II (I) to phase III (II) is second order, while the transition from phase II to phase IV is first order. To reduce the traffic emission and enhance the speed, two strategies were proposed. Simulation results show a maximum reduction of 13.6% in vehicles’ emissions and an increase of 9.5% in the mean speed when adopting self-organizing intersection (second strategy) at low and intermediate α. However, the first strategy enhances the mean speed up to 28.8% and reduces the traffic emissions by 3.6% at high α. Therefore, the combination of both strategies is recommended to promote the traffic efficiency in all traffic states. Finally, the model results illustrate that the system shows low traffic emission adopting symmetric lane-changing rules than asymmetric rules.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3