Subretinal Transplant of Human Amniotic Membrane in Advanced Age-Related Macular Degeneration

Author:

Caporossi TomasoORCID,Scampoli Alessandra,Baldascino AntonioORCID,Gambini Gloria,Pacini Bianca,Governatori Lorenzo,Bacherini DanielaORCID,Carlà Matteo MarioORCID,Crincoli EmanueleORCID,Rizzo Clara,Kilian Raphael,Rizzo Stanislao

Abstract

Macular neovascularization (MNV) and geographic atrophy can complicate age-related macular degeneration (AMD) and lead to severe visual acuity reduction. Despite the medical treatments available, with a defect in the retinal pigmented epithelium (RPE) there is no possibility of restoring acceptable visual acuity. We evaluated postoperative outcomes in patients affected by advanced AMD who underwent subretinal implant of the human amniotic membrane (hAM) as a source of pluripotent stem cells. This retrospective, consecutive, non-randomized interventional study included 23 eyes of 21 patients affected by AMD complicated by MNV, and five eyes of five patients affected by geographic atrophy. All eyes underwent a pars plana vitrectomy, neovascular membrane removal for the MNV group, a subretinal implant of hAM, and gas tamponade, and were followed for 12 months. The primary study outcome was visual acuity improvement. Secondary outcomes were postoperative complications, OCT-angiography parameters correlated with best-corrected visual acuity (BCVA) and MNV recurrence. The mean preoperative BCVA was 1.9 logMAR, and the mean final BCVA value was 1.2 logMAR. In the MNV group, the mean BCVA improved from 1.84 logMAR to 1.26 logMAR, and from 1.84 logMAR to 1.32 logMAR in the geographic atrophy group. No MNV recurrence was evident in 12 months of follow-up. An OCT-angiography scan was used to evaluate the retinal vascularization in the treated eye, which showed a high correlation between BCVA and deep vascular density. This study demonstrates the hAM potential and safety in promoting a partial restoration of retinal function together with an increase in visual acuity.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3