Why Biomass Fuels Are Principally Not Carbon Neutral

Author:

Ahamer GilbertORCID

Abstract

In order to realistically fulfil global and national climate protection targets, all potential measures have to be made use of to a maximum extent. Because it is readily available, biomass energy has been playing a key practical role for decades, supported by the traditional assumption of its carbon neutrality: under sustainable conditions, carbon dioxide emitted during combustion is held to be equal to its absorption during plant growth. In order to clarify conditions of carbon (C) neutrality, it is therefore necessary to model the annual natural C cycle on the entire planet and to include changes caused by a variety of growth strategies for biomass fuels. The “Combined Energy and Biosphere Model” CEBM calculates the cycle of plant growth, decay, biomass fuel production and its combustion on 2433 grid elements worldwide. CEBM results suggest that over many decades, the C pools of litter and especially soil organic carbon (i.e., humus layer) deplete considerably as a consequence of the interrupted natural carbon cycle. Overall, based on this finding, the earlier assumption of “carbon-neutral biomass fuels” is disapproved of in a long-term evaluation and—as a coarse rule of thumb—might be reduced to “half as carbon neutral as previously assumed” (when compared to a current fuel mix). On top of this principal effect, it is well known that life-cycle emissions, indirect or secondary emissions such as energy input related to production, transport and conversion into fuels will still add to this already principally highly incomplete carbon neutrality of biomass.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference167 articles.

1. IPCC (2021, October 15). Sixth Assessment Report. Available online: https://www.ipcc.ch/assessment-report/ar6/.

2. (2021, October 15). The European Green Deal. The European Commission. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en.

3. Biomass energy and the environmental impacts associated with its production and utilization;Abbasi;Renew. Sustain. Energy Rev.,2010

4. Carbon capture and storage from fossil fuels and biomass—Costs and potential role in stabilizing the atmosphere;Azar;Clim. Chang.,2006

5. The roles of hydro, nuclear and biomass energy towards carbon neutrality target in China: A policy-based analysis;Wang;Energy,2023

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3