Celastrol Prevents Oxidative Stress Effects on FSHR, PAPP, and CYP19A1 Gene Expression in Cultured Human Granulosa-Lutein Cells

Author:

Martín-Ramírez Rita,González-Fernández Rebeca,Rotoli DeborahORCID,Hernández Jairo,Martín-Vasallo PabloORCID,Palumbo Angela,Ávila JulioORCID

Abstract

Regulation of oxidative stress (OS) is important to prevent damage to female reproductive physiology. While normal OS levels may have a regulatory role, high OS levels may negatively affect vital processes such as folliculogenesis or embryogenesis. The aim of this work was to study OS induced by glucose, a reactive oxygen species generator, or peroxynitrite, a reactive nitrogen species generator, in cultured human granulosa-lutein (hGL) cells from oocyte donors, analyzing expression of genes involved in oocyte maturation (FSHR, PAPP, and CYP19A1) and OS damage response (ALDH3A2). We also evaluated the effect of celastrol as an antioxidant. Our results showed that although both glucose and peroxynitrite produce OS increments in hGL cells, only peroxynitrite treatment increases ALDH3A2 and PAPP gene expression levels and decreases FSHR gene expression levels. Celastrol pre-treatment prevents this effect of peroxynitrite. Interestingly, when celastrol alone was added, we observed a reduction of the expression of all genes studied, which was independent of both OS inductors. In conclusion, regulation of OS imbalance by antioxidant substances such as celastrol may prevent negative effects of OS in female fertility. In addition to the antioxidant activity, celastrol may well have an independent role on regulation of gene expression in hGL cells.

Funder

Instituto Salud Carlos III, Spain

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3