Combining Dilution of Precision and Kalman Filtering for UWB Positioning in a Narrow Space

Author:

Guo Yunjian12,Li Weihong134,Yang Guang5,Jiao Zhenhang6,Yan Jiachen12

Affiliation:

1. School of Geography, South China Normal University, Guangzhou 510631, China

2. MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China

3. SCNU Qingyuan Institute of Science and Technology Innovation, Qingyuan 511500, China

4. Guangdong Shida Weizhi Information Technology Co., Ltd., Qingyuan 511500, China

5. Beidou Research Institute, South China Normal University, Guangzhou 510631, China

6. The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430072, China

Abstract

Affected by the spatial environment, the accuracy and stability of ultra-wideband (UWB) positioning in a narrow space are significantly lower than those in the general indoor environment, which limits navigation and positioning services in a complex scene. To improve the positioning accuracy and stability of a narrow space, this study proposed a positioning algorithm by combining Kalman filter (KF) and dilution of precision (DOP). Firstly, we calculated the DOP values of the target narrow space by changing the location of the test nodes throughout the space. Secondly, the initial coordinate values of the test nodes were calculated by the weighted least squares (WLS) positioning algorithm and were used as the observation values of KF. Finally, the DOP values were adaptively introduced into KF to update the coordinates of the nodes to be tested. The proposed algorithm was tested in two narrow scenes with different length–width ratios. The experimental results showed that the DOP values of the narrow space were much higher than that of the wide space. Furthermore, even if the ranging error was low, the positioning error was high in the narrow space. The proposed fusion positioning algorithm reported a higher positioning accuracy in the narrow space, and the higher DOP values of the scene, the greater the accuracy improvement of the algorithm. This study reveals that no matter how the base stations are configured, the DOP values of the narrow space are much higher than that of the wide space, thus causing larger positioning errors. The proposed positioning algorithm can effectively suppress the positioning error caused by the narrow spatial structure, so as to improve the positioning accuracy and stability.

Funder

the Ministry of Science and Technology of the People’s Republic of China

the Guangzhou Association for Science and Technology

Publisher

MDPI AG

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3