The Role of Lonp1 on Mitochondrial Functions during Cardiovascular and Muscular Diseases

Author:

Zanini Giada1,Selleri Valentina12,Malerba Mara1,Solodka Kateryna12,Sinigaglia Giorgia1,Nasi Milena3ORCID,Mattioli Anna Vittoria24ORCID,Pinti Marcello1ORCID

Affiliation:

1. Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy

2. Istituto Nazionale per le Ricerche Cardiovascolari, 40126 Bologna, Italy

3. Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy

4. Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy

Abstract

The mitochondrial protease Lonp1 is a multifunctional enzyme that regulates crucial mitochondrial functions, including the degradation of oxidized proteins, folding of imported proteins and maintenance the correct number of copies of mitochondrial DNA. A series of recent studies has put Lonp1 at the center of the stage in the homeostasis of cardiomyocytes and muscle skeletal cells. During heart development, Lonp1 allows the metabolic shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation. Knock out of Lonp1 arrests heart development and determines cardiomyocyte apoptosis. In adults, Lonp1 acts as a cardioprotective protein, as its upregulation mitigates cardiac injury by preventing the oxidative damage of proteins and lipids, and by preserving mitochondrial redox balance. In skeletal muscle, Lonp1 is crucial for cell development, as it mediates the activation of PINK1/Parkin pathway needed for proper myoblast differentiation. Skeletal muscle-specific ablation of Lonp1 in mice causes reduced muscle fiber size and strength due to the accumulation of mitochondrial-retained protein in muscle. Lonp1 expression and activity decline with age in different tissues, including skeletal muscle, and are associated with a functional decline and structural impairment of muscle fibers. Aerobic exercise increases unfolded protein response markers including Lonp1 in the skeletal muscle of aged animals and is associated with muscle functional recovery. Finally, mutations of Lonp1 cause a syndrome named CODAS (Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies) characterized by the impaired development of multiple organs and tissues, including myocytes. CODAS patients show hypotonia and ptosis, indicative of skeletal muscle reduced performance. Overall, this body of observations points Lonp1 as a crucial regulator of mitochondrial functions in the heart and in skeletal muscle.

Funder

Department of Life Sciences, UNIMORE

AIRC

European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie

fellowship from the Istituto Nazionale per le Ricerche Cardiovascolari

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3