Influence of Redox and Dopamine Regulation in Cocaine-Induced Phenotypes Using Drosophila

Author:

Filošević Vujnović Ana1,Rubinić Marko1,Starčević Ivona1,Andretić Waldowski Rozi1

Affiliation:

1. Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia

Abstract

Reactive Oxidative Species (ROS) are produced during cellular metabolism and their amount is finely regulated because of negative consequences that ROS accumulation has on cellular functioning and survival. However, ROS play an important role in maintaining a healthy brain by participating in cellular signaling and regulating neuronal plasticity, which led to a shift in our understanding of ROS from being solely detrimental to having a more complex role in the brain. Here we use Drosophila melanogaster to investigate the influence of ROS on behavioral phenotypes induced by single or double exposure to volatilized cocaine (vCOC), sensitivity and locomotor sensitization (LS). Sensitivity and LS depend on glutathione antioxidant defense. Catalase activity and hydrogen peroxide (H2O2) accumulation play a minor role, but their presence is necessary in dopaminergic and serotonergic neurons for LS. Feeding flies the antioxidant quercetin completely abolishes LS confirming the permissive role of H2O2 in the development of LS. This can only partially be rescued by co-feeding H2O2 or the dopamine precursor 3,4-dihydroxy-L-phenylalanine (L-DA) showing coordinate and similar contribution of dopamine and H2O2. Genetic versatility of Drosophila can be used as a tool for more precise dissection of temporal, spatial and transcriptional events that regulate behaviors induced by vCOC.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3