Preeclampsia Affects Lipid Metabolism and HDL Function in Mothers and Their Offspring

Author:

Stadler Julia T.1ORCID,Scharnagl Hubert2ORCID,Wadsack Christian34ORCID,Marsche Gunther14ORCID

Affiliation:

1. Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria

2. Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria

3. Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria

4. BioTechMed-Graz, 8010 Graz, Austria

Abstract

Preeclampsia (PE) is linked to an overall increased cardiovascular risk for both the mother and child. Functional impairment of high-density lipoproteins (HDL) may contribute to the excess cardiovascular risk associated with PE. In this study, we investigated the effects of PE on maternal and neonatal lipid metabolism, and the parameters of HDL composition and function. The study cohort included 32 normotensive pregnant women, 18 women diagnosed with early-onset PE, and 14 women with late-onset PE. In mothers, early- and late-onset PE was associated with atherogenic dyslipidemia, characterized by high plasma triglycerides and low HDL-cholesterol levels. We observed a shift from large HDL to smaller HDL subclasses in early-onset PE, which was associated with an increased plasma antioxidant capacity in mothers. PE was further associated with markedly increased levels of HDL-associated apolipoprotein (apo) C-II in mothers, and linked to the triglyceride content of HDL. In neonates of early-onset PE, total cholesterol levels were increased, whereas HDL cholesterol efflux capacity was markedly reduced in neonates from late-onset PE. In conclusion, early- and late-onset PE profoundly affect maternal lipid metabolism, potentially contributing to disease manifestation and increased cardiovascular risk later in life. PE is also associated with changes in neonatal HDL composition and function, demonstrating that complications of pregnancy affect neonatal lipoprotein metabolism.

Funder

Austrian Science Fund

Medical University of Graz

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3