Targeting the Cysteine Redox Proteome in Parkinson’s Disease: The Role of Glutathione Precursors and Beyond

Author:

Martinez-Banaclocha Marcos A.1ORCID

Affiliation:

1. Department of Pathology, Lluis Alcanyis Hospital, Xátiva, 46800 Valencia, Spain

Abstract

Encouraging recent data on the molecular pathways underlying aging have identified variants and expansions of genes associated with DNA replication and repair, telomere and stem cell maintenance, regulation of the redox microenvironment, and intercellular communication. In addition, cell rejuvenation requires silencing some transcription factors and the activation of pluripotency, indicating that hidden molecular networks must integrate and synchronize all these cellular mechanisms. Therefore, in addition to gene sequence expansions and variations associated with senescence, the optimization of transcriptional regulation and protein crosstalk is essential. The protein cysteinome is crucial in cellular regulation and plays unexpected roles in the aging of complex organisms, which show cumulative somatic mutations, telomere attrition, epigenetic modifications, and oxidative dysregulation, culminating in cellular senescence. The cysteine thiol groups are highly redox-active, allowing high functional versatility as structural disulfides, redox-active disulfides, active-site nucleophiles, proton donors, and metal ligands to participate in multiple regulatory sites in proteins. Also, antioxidant systems control diverse cellular functions, including the transcription machinery, which partially depends on the catalytically active cysteines that can reduce disulfide bonds in numerous target proteins, driving their biological integration. Since we have previously proposed a fundamental role of cysteine-mediated redox deregulation in neurodegeneration, we suggest that cellular rejuvenation of the cysteine redox proteome using GSH precursors, like N-acetyl-cysteine, is an underestimated multitarget therapeutic approach that would be particularly beneficial in Parkinson’s disease.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3