Metabolic Profiling and Investigation of the Modulatory Effect of Fagonia cretica L. Aerial Parts on Hepatic CYP3A4 and UGT2B7 Enzymes in Streptozotocin—Induced Diabetic Model

Author:

Kamran ShahzadORCID,Anwar Rukhsana,Noor Afifa,Ullah Muhammad Ihsan,Bagalagel Alaa A.ORCID,Aldurdunji Mohammed M.,Ishtiaq Saiqa

Abstract

Drug-metabolizing enzymes are either boosted or suppressed by diabetes mellitus. This research was designed to explore Fagonia cretica L. aerial parts’ impact on CYP3A4 and UGT2B7 activity and their mRNA expression in diabetic rats. Fagonia cretica (F. cretica) dried powder was sequentially extracted with n-hexane, chloroform, ethyl acetate, methanol, and water. The methanol extract and aqueous fraction presented the most significant potential to decrease the concentration of alpha-hydroxyl midazolam, with 176.0 ± 0.85 mg/Kg and 182.9 ± 0.99 mg/Kg, respectively, compared to the streptozotocin (STZ)-induced diabetic group, reflecting the inhibition in CYP3A4 activity. The fold change in mRNA expression of CYP3A4 was decreased significantly by the methanol extract, and the aqueous fraction of F. cretica estimated by 0.15 ± 0.002 and 0.16 ± 0.001, respectively, compared with the diabetic group. Morphine metabolism was significantly increased in rats treated with F. cretica methanol extract and its aqueous fraction, displaying 93.4 ± 0.96 mg/Kg and 96.4 ± 1.27 mg/Kg, respectively, compared with the metabolism of morphine in the diabetic group, which highlights the induction of UGT2B7 activity. The fold change in mRNA expression of UGT2B7 was significantly increased by the methanol extract and the aqueous fraction, estimated at 8.14 ± 0.26 and 7.17 ± 0.23 respectively, compared to the diabetic group. Phytochemical analysis was performed using high-performance liquid chromatography (HPLC), where the methanol extract showed more flavonoids and phenolic compounds compared to the aqueous fraction of F. cretica. The obtained results were further consolidated by molecular docking studies, where quercetin showed the best fitting within the active pocket of CYP3A4, followed by gallic acid, displaying free binding energies (∆G) of −30.83 and −23.12 kcal/mol, respectively. Thus, F. cretica could serve as a complementary medicine with standard anti-diabetic therapy that can modulate the activity of the drug-metabolizing enzymes.

Funder

Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference66 articles.

1. In vitro effect of mitragynine (a major alkaloid of Mitragyna speciosa korth) on aminopyrine metabolism in rat hepatocytes;Anwar;Int. J. Pharm. Sci. Res.,2012

2. The detoxification enzyme systems;Liska;Altern. Med. Rev.,1998

3. The ontogeny of human drug-metabolizing enzymes: Phase II conjugation enzymes and regulatory mechanisms;McCarver;J. Pharmacol. Exp. Ther.,2002

4. Dysregulations of intestinal and colonic UDP-glucuronosyltransferases in rats with type 2 diabetes;Xie;Drug Metab. Pharmacokinet.,2013

5. New flavonoid glycosides from two Astragalus species (Fabaceae) and validation of their antihyperglycaemic activity using molecular modelling and in vitro studies;Janibekov;Ind. Crops Prod.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3