Blb-NRF2-PON1 Cross-Talk in Abdominal Aortic Aneurysm Progression

Author:

Kasprzak Magdalena P.1ORCID,Gryszczyńska Bogna1ORCID,Olasińska-Wiśniewska Anna2ORCID,Urbanowicz Tomasz2ORCID,Jawień Andrzej3,Krasiński Zbigniew3ORCID,Formanowicz Dorota14ORCID

Affiliation:

1. Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland

2. Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland

3. Department of Vascular and Endovascular Surgery Angiology and Phlebology, Poznan University of Medical Sciences, 61-701 Poznan, Poland

4. Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants-National Research, Kolejowa 2, 62-064 Plewiska, Poland

Abstract

The progression of an abdominal aortic aneurysm (AAA) is an important issue, especially as AAA is becoming more common, and potentially life-threatening. This study aimed to understand better the mechanisms underlying AAA progression. For this purpose, we have focused on assessing the selected biomarkers whose potentially common denominator is the NRF2 (nuclear factor erythroid 2-related factor 2) transcription factor, that determines the selected antioxidant enzymes’ activation. The study group consisted of 44 AAA male patients (71.41 ± 7.80 years aged). They were divided into three groups based on the aneurism diameter: group I (below 55 mm), group II (between 55 and 70 mm), and group III (over 70 mm). The laboratory analyses of PON1 (paraoxonase-1), NRF2, and HO-1 (heme oxygenase 1) were performed based on commercial ELISA tests; Blb (bilirubin) and hsCRP (high sensitivity C-reactive protein) were assessed during routine morphology examinations after admission to the hospital. Multiple linear regression showed that both bilirubin and NRF2 determined the PON1 concentration in the entire study group. The correlations between the examined parameters within the three studied groups suggest the capitulation of NRF2-dependent antioxidant mechanisms to pro-inflammatory processes. We showed that HO-1 and hsCRP may play a crucial role in the development of inflammation aneurism progression. Moreover, in patients with medium-sized aneurysms, antioxidant mechanisms were depressed, and inflammatory processes began to dominate, which may lead to uncontrolled growth aneurysm rupture. Our study is one of the first to indicate that the chronically activated antioxidant pathway using NRF2 may be a source of reduction stress.

Funder

statutory funds of Poznan University of Medical Sciences

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3