Carbon Emission Analysis of RC Core Wall-Steel Frame Structures

Author:

Gao Jiangjun1,Shen Zhengliang1,Shao Zerui2,Pan Xinyu2,Tang Deshuang1,Zhao Kun1,Chen Yao23,Lv Hengzhu4

Affiliation:

1. China Construction Fifth Engineering Division Co., Ltd., Changsha 410000, China

2. School of Civil Engineering, Southeast University, Nanjing 211189, China

3. School of Civil Engineering, Southeast University, Wuxi Campus, Wuxi 214082, China

4. Nanjing Kingdom Architecture Design Co., Ltd., Nanjing 210029, China

Abstract

The development of super high-rise building projects has become crucial for mitigating land shortages in rapidly growing urban areas. Super high-rise steel structures, particularly RC core wall-steel frame systems, have become the preferred choice due to their superior performance, high prefabrication level, and construction efficiency. Despite their benefits, super high-rise buildings face challenges related to higher energy consumption and carbon emissions. Consequently, it is important to analyze the carbon emissions of these buildings throughout their lifecycle and propose low-carbon construction strategies. A carbon emission analysis focused on super high-rise buildings with RC core wall-steel frame structures is conducted in this study. A carbon emission analysis model is constructed based on BIM-enabled LCA through a real-world case study. The emission factor method is combined with the BIM model to calculate carbon emission. Furthermore, carbon emissions across various construction strategies are compared, with a particular focus on the manufacturing processes of the main materials. The results indicate that incorporating admixtures in concrete, along with adopting the electric arc furnace (EAF) method and utilizing recycled scrap steel in steel manufacturing, significantly reduces the carbon emissions of the buildings. Lastly, effective low-carbon approaches for these buildings are proposed.

Funder

Natural Science Foundation of Jiangsu Province for Distinguished Young Scientists

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3