3D Printed Microfluidic Separators for Solid/Liquid Suspensions

Author:

Marković Marijan-Pere1ORCID,Žižek Krunoslav1ORCID,Soldo Ksenija1,Sunko Vjeran1,Zrno Julijan1,Vrsaljko Domagoj1ORCID

Affiliation:

1. University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia

Abstract

This study investigates the fabrication of 3D-printed microfluidic devices for solid/liquid separation, focusing on additive manufacturing technologies. Stereolithography (SLA) and fused filament fabrication (FFF) were used to create microseparators with intricate designs optimized for separation efficiency. Model suspensions containing quartz sand, nano-calcium carbonate, and talc-based baby powder in water were prepared using an electric magnetic stirrer and conveyed into the microseparator via a peristaltic pump. Different flow rates were tested to evaluate their influence on the separation efficiency. The highest separation efficiency for the model systems was observed at a flow rate of 200 mL min−1. This was due to the increased turbulence at higher flow rates, which hindered the secondary flow perpendicular to the primary flow direction. The particle size distribution before and after separation was analyzed using sieve and laser diffraction, and particle morphology was inspected by scanning electron microscopy. The laser diffraction analysis revealed post-separation particle size distributions, indicating that Outlet 1 (external stream) consistently captured larger particles more effectively than Outlet 2 (internal stream). This work highlights the potential of additive manufacturing to produce customized microfluidic devices, enabling rapid prototyping and fine-tuning of complex geometries, thus enhancing separation efficiency across various industrial applications.

Funder

Croatian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3