Microencapsulation of Blueberry (Vaccinium myrtillus L.) Extracts via Ionotropic Gelation: In Vitro Assessment of Bioavailability of Phenolic Compounds and Their Activity against Colon Cancer Cells

Author:

Żurek Natalia1ORCID,Świeca Michał2ORCID,Pawłowska Agata1ORCID,Kapusta Ireneusz Tomasz1ORCID

Affiliation:

1. Department of Food Technology and Human Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland

2. Department of Food Chemistry and Biochemistry, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland

Abstract

The aim of the study was to design microcapsules with a core of blueberry fruit extracts (Vaccinium myrtillus L.) using the ionotropic gelation method and then assess the effect of the type of extracts used and the combination of polymers on the profile of phenolic compounds, their in vitro bioavailability, stability during storage, as well as their antioxidant characteristics and cytotoxic activity against colon cancer cells while assessing biocompatibility against normal colon epithelial cells. Encapsulation efficiency (EE), ranging from 8.79 to 74.55%, significantly depended on the extract used and the type of carrier. It was shown that the addition of pectin (Pect) and whey protein isolate (WPI) to alginate (Alg) improved the efficiency of the encapsulation process. For this version of microcapsules, the highest antioxidant activity, phenolic compound content and their stability during storage were also demonstrated. The estimated content of phenolic compounds ranged from 0.48 to 40.07 mg/g, and the dominant compound was cyanidin 3-O-glucoside. In turn, the highest bioavailability of these compounds and the highest cytotoxic activity against cancer cells were characterized by microcapsules with Alg and WPI. Nevertheless, good biocompatibility with normal colon epithelial cells was demonstrated for all versions of microcapsules. The obtained data indicate that the tested variants of microcapsules protect the bioactive compounds of blueberry fruit extracts, which translates into maintaining their health-promoting properties.

Funder

Podkarpackie Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3