A Secure Median Implementation for the Federated Secure Computing Architecture

Author:

Goelz Christian1ORCID,Vieluf Solveig12ORCID,Ballhausen Hendrik3ORCID

Affiliation:

1. Department of Medicine I, LMU University Hospital, LMU Munich, 81377 Munich, Germany

2. DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany

3. Department of Radiation Oncology, LMU University Hospital, LMU Munich, 81377 Munich, Germany

Abstract

In Secure Multiparty Computation (MPC or SMPC), functions are evaluated in encrypted peer-to-peer networks without revealing the private inputs of the participating parties. The median is a non-trivial computation in MPC and is particularly relevant in fields like medicine and economics. Here, we provide an MPC implementation of the median for the Federated Secure Computing (FSC) framework. It is tested on synthetic datasets with varying sizes (N=102 to N=107) and number of participants (M=2 to M=10) across different network environments and hardware configurations. Using minimal networking and computational resources on a commercial hyperscaler, we evaluated real-world performance with breast cancer (N=569) and heart disease (N=920) datasets. Our results showed effective scaling up to N=106 entries with runtime between 1 and 4 s, but runtime exceeded 15 s for 107 entries. The runtime increased linearly with the number of parties, remaining below one minute for up to M=10 parties. Tests with real-world medical data highlight significant network overhead, with runtime increasing from 16 to 17 s locally to over 800 s across hyperscaler regions, emphasizing the need to minimize latency for practical deployment.

Funder

Stifterverband

Publisher

MDPI AG

Reference27 articles.

1. Chen, H., Wang, H., Long, Q., Jin, D., and Li, Y. (2024). Advancements in Federated Learning: Models, Methods, and Privacy. ACM Comput. Surv.

2. Elkordy, A.R., Ezzeldin, Y.H., Han, S., Sharma, S., He, C., Mehrotra, S., and Avestimehr, S. (2023). Federated analytics: A survey. APSIPA Trans. Signal Inf. Process., 12.

3. Secure Multi-Party Computation: Theory, practice and applications;Zhao;Inf. Sci.,2019

4. Bogdanov, D., Kamm, L., Laur, S., and Pruulmann-Vengerfeldt, P. (2024, August 20). Secure Multi-Party Data Analysis: End User Validation and Practical Experiments. Cryptology ePrint Archive, Paper 2013/826. Available online: https://eprint.iacr.org/2013/826.

5. DataSHIELD: Taking the analysis to the data, not the data to the analysis;Gaye;Int. J. Epidemiol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3