Willow (Salix acmophylla Boiss.) Leaf and Branch Extracts Inhibit In Vitro Sporulation of Coccidia (Eimeria spp.) from Goats

Author:

Haj-Zaroubi Manal12,Mattar Nariman1,Awabdeh Sami3,Sweidan Rawad3,Markovics Alex4,Klein Joshua D.5,Azaizeh Hassan6

Affiliation:

1. Institute of Applied Research, The Galilee Society, P.O. Box 437, Shefa-Amr 2020000, Israel

2. Department of Natural Resources and Environmental Management, Faculty of Management, University of Haifa, Haifa 3498838, Israel

3. National Agricultural Research Center (NARC), Amman 19381, Jordan

4. Department of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 5025001, Israel

5. Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Le Ziyyon 7505101, Israel

6. Department of Environmental Sciences, Biotechnology, and Water Sciences, Tel Hai College, Upper Galilee 12208, Israel

Abstract

Willow (Salix spp.) trees, found worldwide, contain secondary metabolites that are valuable as dietary supplements for animal feed and as antiparasitic compounds. We quantified secondary metabolites (phenolics, flavonoids, and salicylic acid) in ethanolic extracts from leaves and branches of three Salix acmophylla Boiss. genotypes and investigated their potential to inhibit Eimeria sp. sporulation, a major concern in ruminants. The total phenolic content of willow leaves and branches was similar in two of three different genotypes. The total flavonoid content of the branches was significantly higher than that of leaves of the same genotype; however, the salicylic acid content was significantly higher in leaves than in branches. Importantly, all extracts exhibited significant inhibition of Eimeria sporulation, where over 70% inhibition was obtained at concentrations as low as 750 mgL−1. The sporulation inhibition by branch or leaf extracts exceeded 80% for leaves and 90% for branches at concentrations above 1250 mgL−1. The study highlights the potential of using Salix extracts as bioactive compounds for biological control of coccidiosis in ruminants. We conclude that all parts and all investigated genotypes of S. acmophylla can provide secondary metabolites that act as a coccidiostat to treat Eimeria in goats.

Funder

MERC

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3