A Multi-Area Task Path-Planning Algorithm for Agricultural Drones Based on Improved Double Deep Q-Learning Net

Author:

Li Jian12,Zhang Weijian1,Ren Junfeng1,Yu Weilin1,Wang Guowei1,Ding Peng1,Wang Jiawei1,Zhang Xuen1

Affiliation:

1. College of Information Technology, Jilin Agricultural University, Changchun 130118, China

2. Bioinformatics Research Center of Jilin Province, Changchun 130118, China

Abstract

With the global population growth and increasing food demand, the development of precision agriculture has become particularly critical. In precision agriculture, accurately identifying areas of nitrogen stress in crops and planning precise fertilization paths are crucial. However, traditional coverage path-planning (CPP) typically considers only single-area tasks and overlooks the multi-area tasks CPP. To address this problem, this study proposed a Regional Framework for Coverage Path-Planning for Precision Fertilization (RFCPPF) for crop protection UAVs in multi-area tasks. This framework includes three modules: nitrogen stress spatial distribution extraction, multi-area tasks environmental map construction, and coverage path-planning. Firstly, Sentinel-2 remote-sensing images are processed using the Google Earth Engine (GEE) platform, and the Green Normalized Difference Vegetation Index (GNDVI) is calculated to extract the spatial distribution of nitrogen stress. A multi-area tasks environmental map is constructed to guide multiple UAV agents. Subsequently, improvements based on the Double Deep Q Network (DDQN) are introduced, incorporating Long Short-Term Memory (LSTM) and dueling network structures. Additionally, a multi-objective reward function and a state and action selection strategy suitable for stress area plant protection operations are designed. Simulation experiments verify the superiority of the proposed method in reducing redundant paths and improving coverage efficiency. The proposed improved DDQN achieved an overall step count that is 60.71% of MLP-DDQN and 90.55% of Breadth-First Search–Boustrophedon Algorithm (BFS-BA). Additionally, the total repeated coverage rate was reduced by 7.06% compared to MLP-DDQN and by 8.82% compared to BFS-BA.

Funder

Changchun Science and Technology Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3