Design and Experimental Study of Banana Bunch Transportation Device with Lifting Mechanism and Automatic Bottom-Fixing Fruit Shaft

Author:

Li Weiqin12,Yang Zhou123,Xu Xing12ORCID,Li Weixi12,Mo Xingkang12,Yu Jiaxiang12,Duan Jieli12ORCID

Affiliation:

1. College of Engineering, South China Agricultural University, Guangzhou 510642, China

2. Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China

3. School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

In addressing the challenges of high labor intensity, cost, and potential mechanical damage to banana fruit in orchards, this study presents the design of a banana bunch transport device featuring a lifting mechanism and an automatic fruit shaft bottom-fixing system. The device is tailored to the planting and morphological characteristics of banana bunches, aiming for efficient, low-loss, and labor-saving mechanized transport. Key design considerations included the anti-overturning mechanism and the lifting system based on transportation conditions and the physical dimensions of banana bunches. A dynamic simulation was conducted to analyze the angular velocity and acceleration during the initial conveying stages, forming the basis for the fruit shaft bottom-fixation mechanism. A novel horizontal multi-point scanning method was developed to accurately identify and secure the fruit shaft bottom, complemented by an automated control system. Experimental results showed a 95.83% success rate in identification and fixation, validated by field trials that confirmed the necessity and stability of the fixation mechanism. To enhance the durability of the fruit shaft bottom-fixation mechanism, a multi-factor test was conducted, optimizing the device’s maximum travel speed and minimizing the banana bunch’s oscillation angle. Field tests showed an oscillation angle of 8.961°, closely matching the simulated result of 9.526°, demonstrating the reliability of the response surface analysis model. This study offers a practical and efficient solution for banana bunch transport in orchards, showcasing significant practical value and potential for wider adoption.

Funder

Open Competition Program of the Top Ten Critical Priorities of Agricultural Science and Technology Innovation

China Agriculture Research System of MOF and MARA

China Scholarship Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3