Experiments on the Influence of Corn Straw Morphological Combinations on Timely No-Tillage Sowing Soil Temperature and Moisture in Cold Regions

Author:

Hou Shouyin,Wang Xing,Ji Zhangchi,Chen Haitao,Zhou Cheng

Abstract

After corn mechanical harvest in autumn in the cold region of northeast China, straw mulching leads to high soil topsoil water content and slow ground temperature rise in the spring sowing season, which may result in a no-tillage planter being unable to operate in time, delayed sowing date, poor seedling emergence quality, and low grain yield. Based on the problems of high moisture content and low temperature in soil topsoil in the spring sowing season in conservation tillage with straw mulching, an experimental study on timely sowing in the spring sowing season was carried out from the perspective of combination optimization of attribute parameters of straw mechanical treatment. Taking the four mechanical treatment attributes as experimental factors, including straw length, straw shape, mulching form (surface covering, inter-ridge covering, and inter-ridge mixed soil covering), and stubble height after corn harvest in autumn of 2019 as experimental factors, and soil topsoil moisture content and temperature during spring sowing in 2020 as evaluation indexes, a field plot experiment was carried out by four factors and three levels of orthogonal combination test method. The results showed that all the factors had significant influence on soil topsoil moisture content and soil topsoil temperature (p < 0.05). It is helpful to reduce the moisture content of soil topsoil and increase the temperature of soil topsoil by increasing the length of corn stalk, breaking the stalk moderately, covering the stalk between ridges, and increasing the stubble height of stalk. Design-Expert software was used to optimize the parameters. The results showed that when the length of straw was 150 mm, the shape of straw was half-cut (dividing straw into two parts evenly along the axis), the mulch was between ridges, and the stubble height was 600 mm, the moisture content of soil topsoil was 22~24% and the temperature of soil topsoil was higher than 8 °C during spring sowing. After corn harvest in autumn of 2021, corn stalks were treated in that year according to the results of parameter optimization combination. The soil topsoil moisture content and temperature were measured to be 24.4% and 8.2 °C, respectively, in the spring sowing season of 2022, which proved that the optimization results in this experiment were credible. The experimental results provide a technical reference for the implementation of conservation tillage with straw surface mulching in the cold region of northeast China.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference34 articles.

1. Research Progress of Conservation Tillage Technology and Machine;He;Trans. Chin. Soc. Agric. Mach.,2018

2. Influence of Conservation Tillage on Greenhouse Effect;Hu;Trans. Chin. Soc. Agric. Eng.,2009

3. Research Progress on Mechanism and Related Technology of Corn Straw Returning in Northeast China;Liang;J. Northeast. Agric. Sci.,2016

4. Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system

5. Effects of Sowing Time Selection on Maize Yield;Wang;J. Anhui Agric. Sci.,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3