Effect of Sodium Selenite Concentration and Culture Time on Extracellular and Intracellular Metabolite Profiles of Epichloë sp. Isolated from Festuca sinensis in Liquid Culture

Author:

Zhou Lianyu,Xie Huichun,Ma Xuelan,Ju Jiasheng,Luo Qiaoyu,Qiao Feng

Abstract

Selenium (Se) is not only an essential trace element critical for the proper functioning of an organism, but it is also an abiotic stressor that affects an organism’s growth and metabolite profile. In this study, Epichloë sp. from Festuca sinensis was exposed to increasing concentrations of Na2SeO3 (0, 0.1, and 0.2 mmol/L) in a liquid media for eight weeks. The mycelia and fermentation broth of Epichloë sp. were collected from four to eight weeks of cultivation. The mycelial biomass decreased in response to increased Se concentrations, and biomass accumulation peaked at week five. Using gas chromatography-mass spectrometry (GC-MS), approximately 157 and 197 metabolites were determined in the fermentation broth and mycelia, respectively. Diverse changes in extracellular and intracellular metabolites were observed in Epichloë sp. throughout the cultivation period in Se conditions. Some metabolites accumulated in the fermentation broth, while others decreased after different times of Se exposure compared to the control media. However, some metabolites were present at lower concentrations in the mycelia when cultivated with Se. The changes in metabolites under Se conditions were dynamic over the experimental period and were involved in amino acids, carbohydrates, organic acids, fatty acids, and nucleotides. Based on these results, we conclude that selenite concentrations and culture time influence the growth, extracellular and intracellular metabolite profiles of Epichloë sp. from F. sinensis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3