Involvement of Pyocyanin in Promoting LPS-Induced Apoptosis, Inflammation, and Oxidative Stress in Bovine Mammary Epithelium Cells

Author:

Zhu Hao12,Cao Wendi2,Huang Yicai2,Karrow Niel A.3,Yang Zhangping12ORCID

Affiliation:

1. College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

2. Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China

3. Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada

Abstract

Pyocyanin (PCN) is an extracellular toxin secreted by Pseudomonas aeruginosa (PA), which has redox capacity and disrupts the redox balance of host cells, affecting cell function and leading to cell death. The aim of this experiment was to compare the degree of apoptosis, inflammation, and oxidative stress of bovine mammary epithelium cells (bMECs) induced by lipopolysaccharide (LPS) and pyocyanin (PCN) and to examine whether PCN can promote the apoptosis, inflammation, and oxidative stress of bMECs induced by LPS. In this study, 1 µg/mL LPS and 1 µg/mL PCN were finally selected for subsequent experiments through dose-dependent experiments. In this study, cells were not given any treatment and were used as the control group (NC). The cells were treated with PCN or LPS individually for 6 h as the PCN group (PCN) or the LPS group (LPS), and the combination of LPS and PCN challenge for 6 h as the LPS + PCN (LPS + PCN) group. Compared with the control and LPS groups, PCN resulted in a significantly upregulated expression of genes related to pro-inflammatory (IL-6, TNF-α, MyD88), apoptotic (Bax, Caspase3, Caspase9), as well as protein expression of components in the TLR4/NF-κB signaling pathway (TLR4, p-p65, p65), and p53 signaling pathway (p-p53, p53, Caspase9) (p < 0.05). Moreover, the expression of genes and proteins was significantly upregulated after PCN treatment combined with LPS compared to either LPS or PCN challenge alone (p < 0.05). The stimulation of PCN combined with LPS significantly increased reactive oxygen species (ROS) and malondialdehyde (MDA) production in bovine mammary epithelial cells (bMECs), as well as decreased glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC). Moreover, cells in the LPS + PCN group aggravated oxidative stress and antioxidant inhibition in cells. In addition, the expression of the corresponding genes and proteins related to the Nrf2 pathway (Nrf2, HO-1) was significantly down-regulated in the PCN group as compared to the control group (p < 0.05). Altogether, PCN stimulation exacerbates inflammatory reactions, apoptosis, and oxidative stress reactions, as well as when combined with LPS challenge in bMECs. Therefore, this study indicates that PCN manifests a role in promoting apoptosis, inflammation, and oxidative stress and interacting with LPS to enhance more serious biological stress responses.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3