A Combined Paddy Field Inter-Row Weeding Wheel Based on Display Dynamics Simulation Increasing Weed Mortality

Author:

Wang Jinwu1ORCID,Liu Zhe1,Yang Mao1,Zhou Wenqi1,Tang Han1,Qi Long2,Wang Qi1,Wang Yi-Jia3ORCID

Affiliation:

1. College of Engineer, Northeast Agricultural University, Harbin 150030, China

2. College of Engineer, South China Agricultural University, Guangzhou 510642, China

3. School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China

Abstract

Weeds compete with rice for sunlight and nutrients and are prone to harboring pathogens, leading to reduced rice yields. Addressing the issues of low weeding efficiency and weed mortality rates in existing inter-row weeding devices, the study proposes the design of a combination paddy field inter-row weeding wheel. The device’s operation process is theoretically analyzed based on the weed control requirements in the northeastern region of China, leading to the determination of specific structural parameters. This research conducted experiments on the mechanical properties of weed cutting to obtain geometric parameters for paddy field weeds. It was found that the range for the cutting gap of the dynamic–fixed blade is between 0.6 mm to 1.4 mm and the cutting angle is between 5° to 15°, resulting in the lowest peak cutting force for weeds. Using LS-DYNA R12.0.0 dynamic simulation software, a fluid–structure interaction (FSI) model of the weeding wheel–water–soil system was established. By employing the central composite experimental design principle and considering the soil stir rate and coupling stress as indicators, the optimal structural parameter combination for the device is obtained: a dynamic–fixed blade cutting gap of 1.4 mm, a cutting angle of 10.95°, and a dynamic blade install angle of −3.44°. Field experiments demonstrated that the device achieved an average weeding rate of 89.7% and an average seedling damage rate of 1.9%, indicating excellent performance. This study contributes to improving weed mortality rates and provides valuable guidance for inter-row mechanical weeding technology.

Funder

National Science Foundation of China

Heilongjiang Provincial Key Research and Development Program

Industrial Technology System of National Rice

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3