Impact of Deficit Irrigation Strategies Using Saline Water on Soil and Peach Tree Yield in an Arid Region of Tunisia

Author:

Toumi Ines1,Ghrab Mohamed2,Zarrouk Olfa34,Nagaz Kamel1ORCID

Affiliation:

1. Dry Lands and Oasis Cropping Laboratory, Arid Regions Institute, University of Gabès, Route de Djorf, km 22.5, Médenine 4119, Tunisia

2. Olive Institute, University of Sfax, LR16IO02, BP 1087, Sfax 3000, Tunisia

3. IRTA-Institute of Agrifood Research and Technology, Torre Marimon, 08140 Barcelona, Spain

4. LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal

Abstract

Sustainable fruit orchard development in arid areas is severely affected by the scarcity of fresh water. To mitigate the lack of fresh water, the use of low-quality water for irrigation is becoming a common practice in several margin areas. However, salinity is considered one of the most important environmental constraints limiting the successful crop production. Therefore, the effects of deficit irrigation strategies using saline water (3.1 dS m−1) on soil water content, soil salinity, and yield of commercial peach orchard were investigated. Three irrigation treatments were considered: a Control, full irrigated (FI); and partial root-zone drying (PRD50); and deficit irrigation (DI) strategies irrigated at 50% ETc. These levels of water supply allowed for contrasting watering conditions with clear distinction between irrigation treatments. The differential pattern in soil moisture was accompanied by that of soil salinity with an increase in all FI treatments (16–25%). The results indicated that soil salinity increased with increasing water supply and evaporative demand during the growing season from January (3.2 dS m−1) to August (6.6 dS m−1). Deficit irrigation strategies (DI, PRD50) induced more soil salinity along the row emitter compared to the Control due to insufficient leaching fractions. By the end of the growing season, the soil salinity under long-term saline drip irrigation remained stable (5.3–5.7 dS m−1). An efficient leaching action seemed to be guaranteed by rainfall and facilitated by sandy soil texture, as well as the high evaporative demand and the important salt quantity supplied, which maintain the deficit irrigation strategies as valuable tools for water saving and improving water productivity. The significant water saving of 50% of water requirements induced a fruit yield loss of 20%. For this reason, DI and PRD50 could be reasonable irrigation management tools for saving water and controlling soil salinity in arid areas and on deep sandy soil.

Funder

Research Agreement Program of Dry Land and Oasis Cropping Laboratory at Arid Regions Institute

Ministry of Higher Education and Scientific Research Tunisia

Publisher

MDPI AG

Reference55 articles.

1. FAO (2012). The State of World Fisheries and Aquaculture, FAO.

2. FAO (2017). Water for Sustainable Food and Agriculture, a Report Produced for the G20, FAO.

3. Global Hydrological Cycles and World Water Resources;Oki;Science,2006

4. UN Environment (2019). Global Environment Outlook–GEO-6: Healthy Planet, Healthy People, UN Environment.

5. IPCC (2013). The Physical Science Basis Contribution of Working Group to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3