Effects of Poultry Manure Biochar on Salicornia herbacea L. Growth and Carbon Sequestration

Author:

Chun Danbi1,Cho Hyun2,Hahm Victor J.2,Kim Michelle2,Im Seok Won3,Kim Hong Gun1,Kim Young Soon1ORCID

Affiliation:

1. Institute of Carbon Technology, Jeonju University, Jeonju 55069, Republic of Korea

2. Global Prodigy Academy, Jeonju 55069, Republic of Korea

3. Koreastevia, Jeongeup-si 56216, Republic of Korea

Abstract

In order to explore the potential of biochar produced from poultry manure for sustainable waste utilization, carbon sequestration, and agricultural development, this study examines the impact of biochar on the growth of the halophyte plant Salicornia herbacea L., or glasswort. Because of their properties of morphological and chemical properties, biochar has been gaining interest as a potential solution to addressing both the concerns of climate change and unsustainable agriculture. In this study, the characteristics of biochar were analyzed and its impact on plant growth by stem length was measured over 15 weeks. Poultry-based biochar was created through pyrolysis at the temperatures of 400, 500, and 700 °C. Various amounts of biochar produced from pyrolysis at 500 °C were put to soil. However, the average surface area and average pore size values of poultry manure biochar produced from temperatures 400, 500, and 700 °C were similar enough to be negligible. The biochar sample produced from the pyrolysis temperature of 500 °C had an average pore size of 17.18 nm and a surface area of 18.06 m2/g. From weeks 4 to 15, all groups exhibited increased stem length, with the most significant differences observed between the biochar 0% (control) and biochar 10% groups, with biochar 0% and biochar 10% denoting 0% and 10% weight concentrations of biochar, respectively. While biochar 5% and biochar 7% groups showed minimal differences in stem length, biochar 10% demonstrated a significant increase, suggesting an optimal biochar percentage for enhancing plant growth. Carbon credit estimations have suggested that 1 ton of poultry manure biochar produced from pyrolysis at 500 C° equates to an estimate of 0.5248 ± 0.0580 carbon credits, the highest of all three biochar samples. All three samples (biochar produced from 400, 500, and 700 °C pyrolysis temperatures) had increased heavy metal contents and a wider range of functional groups. The findings indicate that biochar can effectively improve soil health and plant performance overall, with biochar 10% showing the most significant impact on Salicornia growth.

Funder

ministry of Education

Korean government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3