Characteristics of the Polishing Effects for the Stainless Tubes in Magnetic Finishing with Gel Abrasive

Author:

Cheng Ken-Chuan,Chen Kuan-Yu,Tsui Hai-PingORCID,Wang A-ChengORCID

Abstract

Magnetic abrasive finishing (MAF) is a fast, high efficiency and high-precision polishing method on the surface machining of the metals. Furthermore, MAF also can be utilized to polish the stainless tubes in industrial applications; however, stainless tubes are often a non-magnetic material that makes it difficult for the magnetic field line to penetrate into the stainless tubes, thus reducing the magnetic forces in the inner tubes polishing. That is why stainless tubes are not easy to finish using traditional MAF. Therefore, magnetic finishing with gel abrasive (MFGA) applies gels mixed with steel grit and abrasives that were developed to improve the polishing efficiency and surface uniformity of the steel elements. In this study, a guar gum or silicone gel mixed with steel grit and silicon carbides are used as the magnetic abrasive gel to polish the stainless inner tubes. A DC motor was used to control the rotation speed of the chuck and an AC induction motor connected with an eccentric cam to produce the reciprocating motion of the workpiece were utilized to finish the inner surface of stainless tubes in the polishing process. The parameters of abrasive concentration, abrasive particle sizes, rotation speeds of motor and electric currents were used to investigate the surface roughness and the removal of materials from the stainless tubes. The experimental results showed that since guar gum had better fluidity than the silicone gel did, guar gum created excellent polishing efficiency in MFGA. Furthermore, the surface roughness of the stainless tube decreased from 0.646 μm Ra to below 0.056 μm Ra after processing for 30 min with the parameters of current 3A, gel abrasive with guar gum, rotational speed 1300 rpm and vibration frequency 4 Hz.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3