IEF-CSNET: Information Enhancement and Fusion Network for Compressed Sensing Reconstruction

Author:

Zhou Ziqun1ORCID,Liu Fengyin1,Shen Haibin1

Affiliation:

1. College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310058, China

Abstract

The rapidly growing requirement for data has put forward Compressed Sensing (CS) to realize low-ratio sampling and to reconstruct complete signals. With the intensive development of Deep Neural Network (DNN) methods, performance in image reconstruction from CS measurements is constantly increasing. Currently, many network structures pay less attention to the relevance of before- and after-stage results and fail to make full use of relevant information in the compressed domain to achieve interblock information fusion and a great receptive field. Additionally, due to multiple resamplings and several forced compressions of information flow, information loss and network structure redundancy inevitably result. Therefore, an Information Enhancement and Fusion Network for CS reconstruction (IEF-CSNET) is proposed in this work, and a Compressed Information Extension (CIE) module is designed to fuse the compressed information in the compressed domain and greatly expand the receptive field. The Error Comprehensive Consideration Enhancement (ECCE) module enhances the error image by incorporating the previous recovered error so that the interlink among the iterations can be utilized for better recovery. In addition, an Iterative Information Flow Enhancement (IIFE) module is further proposed to complete the progressive recovery with loss-less information transmission during the iteration. In summary, the proposed method achieves the best effect, exhibits high robustness at this stage, with the peak signal-to-noise ratio (PSNR) improved by 0.59 dB on average under all test sets and sampling rates, and presents a greatly improved speed compared with the best algorithm.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. Compressed sensing;Donoho;IEEE Trans. Inf. Theory,2006

2. Communication in the Presence of Noise;Shannon;Proc. IRE,1949

3. Ye, D., Ni, Z., Wang, H., Zhang, J., Wang, S., and Kwong, S. (2021). CSformer: Bridging Convolution and Transformer for Compressive Sensing. arXiv.

4. AMP-Net: Denoising-Based Deep Unfolding for Compressive Image Sensing;Zhang;IEEE Trans. Image Process.,2021

5. Liang, J., Peng, H., Li, L., and Tong, F. (2022). Construction of Structured Random Measurement Matrices in Semi-Tensor Product Compressed Sensing Based on Combinatorial Designs. Sensors, 22.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3