A Systematic Review of UAV Applications for Mapping Neglected and Underutilised Crop Species’ Spatial Distribution and Health

Author:

Abrahams Mishkah1ORCID,Sibanda Mbulisi1ORCID,Dube Timothy2,Chimonyo Vimbayi G. P.34ORCID,Mabhaudhi Tafadzwanashe35ORCID

Affiliation:

1. Discipline of Geography, Environmental Studies & Tourism, Faculty of Arts, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa

2. Institute of Water Studies, Faculty of Science, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa

3. Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth & Environmental Sciences, University of KwaZulu-Natal, P/Bag X01, Pietermaritzburg 3209, South Africa

4. International Maize and Wheat Improvement Center (CIMMYT)-Zimbabwe, Mt Pleasant, Harare P.O. Box MP 163, Zimbabwe

5. International Water Management Institute (IWMI-SA), Southern Africa Office, Pretoria 0184, South Africa

Abstract

Timely, accurate spatial information on the health of neglected and underutilised crop species (NUS) is critical for optimising their production and food and nutrition in developing countries. Unmanned aerial vehicles (UAVs) equipped with multispectral sensors have significantly advanced remote sensing, enabling the provision of near-real-time data for crop analysis at the plot level in small, fragmented croplands where NUS are often grown. The objective of this study was to systematically review the literature on the remote sensing (RS) of the spatial distribution and health of NUS, evaluating the progress, opportunities, challenges, and associated research gaps. This study systematically reviewed 171 peer-reviewed articles from Google Scholar, Scopus, and Web of Science using the PRISMA approach. The findings of this study showed that the United States (n = 18) and China (n = 17) were the primary study locations, with some contributions from the Global South, including southern Africa. The observed NUS crop attributes included crop yield, growth, leaf area index (LAI), above-ground biomass (AGB), and chlorophyll content. Only 29% of studies explored stomatal conductance and the spatial distribution of NUS. Twenty-one studies employed satellite-borne sensors, while only eighteen utilised UAV-borne sensors in conjunction with machine learning (ML), multivariate, and generic GIS classification techniques for mapping the spatial extent and health of NUS. The use of UAVs in mapping NUS is progressing slowly, particularly in the Global South, due to exorbitant purchasing and operational costs, as well as restrictive regulations. Subsequently, research efforts must be directed toward combining ML techniques and UAV-acquired data to monitor NUS’ spatial distribution and health to provide necessary information for optimising food production in smallholder croplands in the Global South.

Funder

Water Research Commission of South Africa

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3