Effects of Cold Rolling or Precipitation Hardening Treatment on the Microstructure, Mechanical Properties, and Corrosion Resistance of Ti-Rich Metastable Medium-Entropy Alloys

Author:

Hsu Hsueh-Chuan1ORCID,Wong Ka-Kin2,Wu Shih-Ching1,Huang Chun-Yu2,Ho Wen-Fu2ORCID

Affiliation:

1. Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan

2. Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan

Abstract

Titanium-rich metastable medium-entropy alloys, designed for low elastic moduli, sacrifice strength. However, enhancing their mechanical strength is crucial for bio-implant applications. This study aims to enhance the mechanical properties and corrosion resistance of a metastable Ti80–Nb10–Mo5–Sn5 medium-entropy alloy using various treatments, including cold rolling (at 50% and 75% reduction) and precipitation hardening (at room temperature, 150 °C, 350 °C, 550 °C, and 750 °C). The results showed that the alloy underwent a stress-induced martensitic transformation during the rolling process. Notably, the α phase was precipitated in the β grain boundaries after 30 days of precipitation hardening at room temperature. The yield strengths of the alloy increased by 51% and 281.9% after room-temperature precipitation and 75% cold rolling, respectively. In potentiodynamic corrosion tests conducted in phosphate-buffered saline solution, the pitting potentials of the alloy treated using various conditions were higher than 1.8 V, and no pitting holes were observed on the surface of the alloys. The surface oxide layer of the alloy was primarily composed of TiO2, Nb2O5, MoO3, and SnO2, contributing to the alloy’s exceptional corrosion and pitting resistance. The 75% rolled Ti80–Nb10–Mo5–Sn5 demonstrates exceptional mechanical properties and high corrosion resistance, positioning it as a promising bio-implant candidate.

Funder

National University of Kaohsiung

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3