Evaluating and Enhancing Artificial Intelligence Models for Predicting Student Learning Outcomes

Author:

Farhood Helia1ORCID,Joudah Ibrahim1ORCID,Beheshti Amin2ORCID,Muller Samuel1ORCID

Affiliation:

1. School of Mathematical and Physical Sciences, Macquarie University, Sydney, NSW 2109, Australia

2. School of Computing, Macquarie University, Sydney, NSW 2109, Australia

Abstract

Predicting student outcomes is an essential task and a central challenge among artificial intelligence-based personalised learning applications. Despite several studies exploring student performance prediction, there is a notable lack of comprehensive and comparative research that methodically evaluates and compares multiple machine learning models alongside deep learning architectures. In response, our research provides a comprehensive comparison to evaluate and improve ten different machine learning and deep learning models, either well-established or cutting-edge techniques, namely, random forest, decision tree, support vector machine, K-nearest neighbours classifier, logistic regression, linear regression, and state-of-the-art extreme gradient boosting (XGBoost), as well as a fully connected feed-forward neural network, a convolutional neural network, and a gradient-boosted neural network. We implemented and fine-tuned these models using Python 3.9.5. With a keen emphasis on prediction accuracy and model performance optimisation, we evaluate these methodologies across two benchmark public student datasets. We employ a dual evaluation approach, utilising both k-fold cross-validation and holdout methods, to comprehensively assess the models’ performance. Our research focuses primarily on predicting student outcomes in final examinations by determining their success or failure. Moreover, we explore the importance of feature selection using the ubiquitous Lasso for dimensionality reduction to improve model efficiency, prevent overfitting, and examine its impact on prediction accuracy for each model, both with and without Lasso. This study provides valuable guidance for selecting and deploying predictive models for tabular data classification like student outcome prediction, which seeks to utilise data-driven insights for personalised education.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3