Development of Visible/Near-Infrared Hyperspectral Imaging for the Prediction of Total Arsenic Concentration in Soil

Author:

Wei Lifei,Zhang Yangxi,Yuan Ziran,Wang Zhengxiang,Yin Feng,Cao LiqinORCID

Abstract

Soil total arsenic (TAs) contamination caused by human activities—such as mining, smelting, and agriculture—is a problem of global concern. Visible/near-infrared (VNIR), X-ray fluorescence spectroscopy (XRF), and laser-induced breakdown spectroscopy (LIBS) do not need too much sample preparation and utilization of chemicals to evaluate total arsenic (TAs) concentration in soil. VNIR with hyperspectral imaging has the potential to predict TAs concentration in soil. In this study, 59 soil samples were collected from the Daye City mining area of China, and hyperspectral imaging of the soil samples was undertaken using a visible/near-infrared hyperspectral imaging system (wavelength range 470–900 nm). Spectral preprocessing included standard normal variate (SNV) transformation, multivariate scatter correction (MSC), first derivative (FD) preprocessing, and second derivative (SD) preprocessing. Characteristic bands were then identified based on Spearman’s rank correlation coefficients. Four regression models were used for the modeling prediction: partial least squares regression (PLSR) (R2 = 0.71, RMSE = 0.48), support vector machine regression (SVMR) (R2 = 0.78, RMSE = 0.42), random forest (RF) (R2 = 0.78, RMSE = 0.42), and extremely randomized trees regression (ETR) (R2 = 0.81, RMSE = 0.38). The prediction results were compared with the results of atomic fluorescence spectrometry methods. In the prediction results of the models, the accuracy of ETR using FD preprocessing was the highest. The results confirmed that hyperspectral imaging combined with Spearman’s rank correlation with machine learning models can be used to estimate soil TAs content.

Funder

National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3