Distributed Detection of Large-Scale Internet of Things Botnets Based on Graph Partitioning

Author:

Qian Kexiang12,Yang Hongyu3,Li Ruyu3,Chen Weizhe3,Luo Xi3,Yin Lihua3

Affiliation:

1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. State Grid Laboratory of Power Cyber-Security Protection and Monitoring Technology, Sgri Power Grid Digitizing Technology Department, State Grid Smart Grid Research Institute Co., Ltd., Beijing 100190, China

3. Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 511363, China

Abstract

With the rapid growth of IoT devices, the threat of botnets is becoming increasingly worrying. There are more and more intelligent detection solutions for botnets that have been proposed with the development of artificial intelligence. However, due to the current lack of computing power in IoT devices, these intelligent methods often cannot be well-applied to IoT devices. Based on the above situation, this paper proposes a distributed botnet detection method based on graph partitioning, efficiently detecting botnets using graph convolutional networks. In order to alleviate the wide range of IoT environments and the limited computing power of IoT devices, the algorithm named METIS is used to divide the network traffic structure graph into small graphs. To ensure robust information flow between nodes while preventing gradient explosion, diagonal enhancement is applied to refine the embedding representations at each layer, facilitating accurate botnet attack detection. Through comparative analysis with GATv2, GraphSAGE, and GCN across the C2, P2P, and Chord datasets, our method demonstrates superior performance in both accuracy and F1 score metrics. Moreover, an exploration into the effects of varying cluster numbers and depths revealed that six cluster levels yielded optimal results on the C2 dataset. This research significantly contributes to mitigating the IoT botnet threat, offering a scalable and effective solution for diverse IoT ecosystems.

Funder

National Key R&D Program of China

National Science Foundation of China

Major Key Project of PCL

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3