SimKG-BERT: A Security Enhancement Approach for Healthcare Models Consisting of Fusing SimBERT and a Knowledge Graph

Author:

Li Songpu12,Yu Xinran3,Chen Peng24ORCID

Affiliation:

1. College of Economics & Management, Three Gorges University, Yichang 443002, China

2. Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, Three Gorges University, Yichang 443002, China

3. The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China

4. College of Computer and Information Technology, Three Gorges University, Yichang 443002, China

Abstract

Model robustness is an important index in medical cybersecurity, and hard-negative samples in electronic medical records can provide more gradient information, which can effectively improve the robustness of a model. However, hard negatives pose difficulties in terms of their definition and acquisition. To solve these problems, a data augmentation approach consisting of fusing SimBERT and a knowledge graph for application to a hard-negative sample is proposed in this paper. Firstly, we selected 40 misdiagnosed cases of diabetic complications as the original data for data augmentation. Secondly, we divided the contents of the electronic medical records into two parts. One part consisted of the core disease phrases in the misdiagnosed case records, which a medical specialist selected. These denoted the critical diseases that the model diagnosed as negative samples. Based on these core symptom words, new symptom phrases were directly generated using the SimBERT model. On the other hand, the noncore phrases of misdiagnosed medical records were highly similar to the positive samples. We determined the cosine similarity between the embedding vector of the knowledge graph entities and a vector made up of the noncore phrases. Then, we used Top-K sampling to generate text. Finally, combining the generated text from the two parts and the disturbed numerical indexes resulted in 160 enhancement samples. Our experiment shows that the distances between the samples generated using the SimKG-BERT model’s samples were closer to those of the positive samples and the anchor points in the space vector were closer than those created using the other models. This finding is more in line with how hard negatives are defined. In addition, compared with the model without data augmentation, the F1 values in the three data sets of diabetic complications increased by 6.4%, 2.24%, and 5.54%, respectively. The SimKG-BERT model achieves data augmentation in the absence of misdiagnosed medical records, providing more gradient information to the model, which not only improves the robustness of the model but also meets the realistic needs of assisted-diagnosis safety.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3