Energy Consumption Prediction in Residential Buildings—An Accurate and Interpretable Machine Learning Approach Combining Fuzzy Systems with Evolutionary Optimization

Author:

Gorzałczany Marian B.1ORCID,Rudziński Filip1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Kielce University of Technology, Al. 1000-lecia P. P. 7, 25-314 Kielce, Poland

Abstract

This paper addresses the problem of accurate and interpretable prediction of energy consumption in residential buildings. The solution that we propose in this work employs the knowledge discovery machine learning approach combining fuzzy systems with evolutionary optimization. The contribution of this work is twofold, including both methodology and experimental investigations. As far as methodological contribution is concerned, in this paper, we present an original designing procedure of fuzzy rule-based prediction systems (FRBPSs) for accurate and transparent energy consumption prediction in residential buildings. The proposed FRBPSs are characterized by a genetically optimized accuracy–interpretability trade-off. The trade-off optimization is carried out by means of multi-objective evolutionary optimization algorithms—in particular, by our generalization of the well-known strength Pareto evolutionary algorithm 2 (SPEA2). The proposed FRBPSs’ designing procedure is our original extension and generalization (for regression problems operating on continuous outputs) of an approach to designing fuzzy rule-based classifiers (FRBCs) we developed earlier and published in 2020 in this journal. FRBCs operate on discrete outputs, i.e., class labels. The experimental contribution of this work includes designing the collection of FRBPSs for residential building energy consumption prediction using the data set published in 2024 and available from Kaggle Database Repository. Moreover, the comparison with 20 available alternative approaches is carried out, demonstrating that our approach significantly outperforms alternative methods in terms of interpretability and transparency of the energy consumption predictions made while remaining comparable or slightly superior in terms of the accuracy of those predictions.

Publisher

MDPI AG

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3