Synthesis and Electrochemical Characterization of Nitrate-Doped Polypyrrole/Ag Nanowire Nanorods as Supercapacitors

Author:

Kang Hyo-Kyung1,Pyo Ki-Hyun1,Jang Yoon-Hee2ORCID,Kim Youn-Soo1,Kim Jin-Yeol1ORCID

Affiliation:

1. School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea

2. Advanced Photovoltaics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

Abstract

Polypyrrole (PPy)-capped silver nanowire (Ag NW) nanomaterials (core–shell rod-shaped Ag NW@PPy) were synthesized using a one-port suspension polymerization technique. The thickness of the PPy layer on the 50 nm thickness/15 μm length Ag NW was effectively controlled to 10, 40, 50, and 60 nm. Thin films cast from one-dimensional conductive Ag NW@PPy formed a three-dimensional (3D) conductive porous network structure and provided excellent electrochemical performance. The 3D Ag NW@PPy network can significantly reduce the internal resistance of the electrode and maintain structural stability. As a result, a high specific capacitance of 625 F/g at a scan rate of 1 mV/s was obtained from the 3D porous Ag NW@PPy composite film. The cycling performance over a long period exceeding 10,000 cycles was also evaluated. We expect that our core–shell-structured Ag NW@PPy composites and their 3D porous structure network films can be applied as electrochemical materials for the design and manufacturing of supercapacitors and other energy storage devices.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3