Development of Carvedilol Nanoformulation-Loaded Poloxamer-Based In Situ Gel for the Management of Glaucoma

Author:

Almutairy Bjad K.1ORCID,Khafagy El-Sayed12ORCID,Abu Lila Amr Selim345ORCID

Affiliation:

1. Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt

3. Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt

4. Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia

5. Medical and Diagnostic Research Center, University of Hail, Hail 81442, Saudi Arabia

Abstract

The objective of the current study was to fabricate a thermosensitive in situ gelling system for the ocular delivery of carvedilol-loaded spanlastics (CRV-SPLs). In situ gel formulations were prepared using poloxamer analogs by a cold method and was further laden with carvedilol-loaded spanlastics to boost the precorneal retention of the drug. The gelation capacity, rheological characteristics, muco-adhesion force and in vitro release of various in situ gel formulations (CS-ISGs) were studied. The optimized formula (F2) obtained at 22% w/v poloxamer 407 and 5% w/v poloxamer 188 was found to have good gelation capacity at body temperature with acceptable muco-adhesion properties, appropriate viscosity at 25 °C that would ease its ocular application, and relatively higher viscosity at 37 °C that promoted prolonged ocular residence of the formulation post eye instillation and displayed a sustained in vitro drug release pattern. Ex vivo transcorneal penetration studies through excised rabbit cornea revealed that F2 elicited a remarkable (p ˂ 0.05) improvement in CRV apparent permeation coefficient (Papp = 6.39 × 10−6 cm/s) compared to plain carvedilol-loaded in situ gel (CRV-ISG; Papp = 2.67 × 10−6 cm/s). Most importantly, in normal rabbits, the optimized formula (F2) resulted in a sustained intraocular pressure reduction and a significant enhancement in the ocular bioavailability of carvedilol, as manifested by a 2-fold increase in the AUC0–6h of CRV in the aqueous humor, compared to plain CRV-ISG formulation. To sum up, the developed thermosensitive in situ gelling system might represent a plausible carrier for ophthalmic drug delivery for better management of glaucoma.

Funder

Prince Sattam Bin Abdulaziz University

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3