Polymer Gel Substrate: Synthesis and Application in the Intensive Light Artificial Culture of Agricultural Plants

Author:

Panova Gayane G.1ORCID,Krasnopeeva Elena L.2,Laishevkina Svetlana G.2ORCID,Kuleshova Tatiana E.1ORCID,Udalova Olga R.1,Khomyakov Yuriy V.1,Mirskaya Galina V.1ORCID,Vertebny Vitaly E.1,Zhuravleva Anna S.1,Shevchenko Natalia N.2ORCID,Yakimansky Alexander V.2ORCID

Affiliation:

1. Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia

2. Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), 199004 Saint-Petersburg, Russia

Abstract

This work is devoted to the description of the synthesis of hydrogels in the process of cryotropic gel formation based on copolymerization of synthesized potassium 3-sulfopropyl methacrylate and 2-hydroxyethyl methacrylate (SPMA-co-HEMA) and assessing the potential possibility of their use as substrates for growing plants in intensive light culture in a greenhouse. Gel substrates based on the SPMA-co-HEMA were created in two compositions, differing from each other in the presence of macro- and microelements, and their effects were studied on the plants’ physiological state (content of chlorophylls a and b, activity of catalase and peroxidase enzymes, intensity of lipid peroxidation, elemental compositions) at the vegetative period of their development and on the plants’ growth, productivity and quality of plant production at the final stages of development. Experiments were carried out under controlled microclimate conditions. Modern and standard generally accepted methods of gels were employed (ATR-FTIR and 13C NMR spectral studies, scanning electron microscopy, measurement of specific surface area and pore volume), as well as the methods of the physiological and chemical analysis of plants. The study demonstrated the swelling ability of the created gel substrates. Hydrogels’ structure, their specific surface area, porosity, and pore volume were investigated. Using the example of representatives of leaf, fruit and root vegetable crops, the high biological activity of gel substrates was revealed throughout the vegetation period. Species specificity in the reaction of plants to the presence of gel substrates in the root-inhabited environment was revealed. Lettuce, tomato and cucumber plants were more responsive to the effect of the gel substrate, and radish plants were less responsive. At the same time, more pronounced positive changes in plant growth, quality and productivity were observed in cucumber and lettuce in the variant of gel substrates with macro- and microelements and in tomato plants in both variants of gel substrates. Further research into the mechanisms of the influence of gel substrates on plants, as well as the synthesis of new gel substrates with more pronounced properties to sorb and retain moisture is promising.

Funder

Russian Science Foundation

St. Petersburg Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3