Sustained Release of Voriconazole Using 3D-Crosslinked Hydrogel Rings and Rods for Use in Corneal Drug Delivery

Author:

Rakhmetova Aiym1ORCID,Yi Zhiqi1,Sarmout Malake1ORCID,Koole Leo H.1

Affiliation:

1. National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China

Abstract

Corneal disorders and diseases are prevalent in the field of clinical ophthalmology. Fungal keratitis, one of the major factors leading to visual impairment and blindness worldwide, presents significant challenges for traditional topical eye drop treatments. The objective of this study was to create biocompatible 3D-crosslinked hydrogels for drug delivery to the cornea, intending to enhance the bioavailability of ophthalmic drugs. Firstly, a series of flexible and porous hydrogels were synthesized (free-radical polymerization), characterized, and evaluated. The materials were prepared by the free-radical polymerization reaction of 1-vinyl-2-pyrrolidinone (also known as N-vinylpyrrolidone or NVP) and 1,6-hexanediol dimethacrylate (crosslinker) in the presence of polyethylene glycol 1000 (PEG-1000) as the porogen. After the physicochemical characterization of these materials, the chosen hydrogel demonstrated outstanding cytocompatibility in vitro. Subsequently, the selected porous hydrogels could be loaded with voriconazole, an antifungal medication. The procedure was adapted to realize a loading of 175 mg voriconazole per ring, which slightly exceeds the amount of voriconazole that is instilled into the eye via drop therapy (a single eye drop corresponds with approximately 100 mg voriconazole). The voriconazole-loaded rings exhibited a stable zero-order release pattern over the first two hours, which points to a significantly improved bioavailability of the drug. Ex vivo experiments using the established porcine eye model provided confirmation of a 10-fold increase in drug penetration into the cornea (after 2 h of application of the hydrogel ring, 35.8 ± 3.2% of the original dose is retrieved from the cornea, which compares with 3.9 ± 1% of the original dose in the case of eye drop therapy). These innovative hydrogel rods and rings show great potential for improving the bioavailability of ophthalmic drugs, which could potentially lead to reduced hospitalization durations and treatment expenses.

Funder

Wenzhou Medical University

Eye Hospital of Wenzhou Medical University

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3