A Sterile, Injectable, and Robust Sericin Hydrogel Prepared by Degraded Sericin

Author:

Zhang Yeshun123ORCID,Wang Susu1,Li Yurong12,Li Xiang1,Du Zhanyan1,Liu Siyu1,Song Yushuo1,Li Yanyan1,Zhang Guozheng12

Affiliation:

1. School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China

2. Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China

3. Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang 212121, China

Abstract

The application of sericin hydrogels is limited mainly due to their poor mechanical strength, tendency to be brittle and inconvenient sterilization. To address these challenges, a sericin hydrogel exhibiting outstanding physical and chemical properties along with cytocompatibility was prepared through crosslinking genipin with degraded sericin extracted from fibroin deficient silkworm cocoons by the high temperature and pressure method. Our reported sericin hydrogels possess good elasticity, injectability, and robust behaviors. The 8% sericin hydrogel can smoothly pass through a 16 G needle. While the 12% sericin hydrogel remains intact until its compression ratio reaches 70%, accompanied by a compression strength of 674 kPa. 12% sericin hydrogel produce a maximum stretch of 740%, with breaking strength and tensile modulus of 375 kPa and 477 kPa respectively. Besides that, the hydrogel system demonstrated remarkable cell-adhesive capabilities, effectively promoting cell attachment and, proliferation. Moreover, the swelling and degradation behaviors of the hydrogels are pH responsiveness. Sericin hydrogel releases drugs in a sustained manner. Furthermore, this study addresses the challenge of sterilizing sericin hydrogels (sterilization will inevitably lead to the destruction of their structures). In addition, it challenges the prior notion that sericin extracted under high temperature and pressure is difficult to directly cross-linked into a stable hydrogel. This developed hydrogel system in this study holds promise to be a new multifunctional platform expanding the application area scope of sericin.

Funder

Natural Science Foundation of Jiangsu province of China

China Agriculture Research System

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3